تکامل لندفرم‌های اواخر کوانترنی در پاسخ به تغییرات تکنولوژیکی فعال سطح اساس در منطقه طبس، ایران مرکزی

چکیده

در این پژوهش به بررسی شواهد و آثار زمین‌ساخت فعال در اطراف کویر طبس پرداخته شده است. برای تحلیل‌های کمی لندفرم‌ها از نواحی سبکی و نقشه‌های زمین‌ساختی استفاده شده است. تغییرات فیزیکی و شیمیایی زمین‌ساختی دلیل‌های تغییرات سطح اساس در منطقه طبس می‌باشند. این اثرات نشان دهنده تغییرات چندین نوعی فعالیت طبیعی است. تأثیرات این فعالیت‌ها در طبقه‌بندی فعالیت‌ها و سیستم‌های معمولی مدل‌سازی قابل استفاده حساب می‌گردد. این اثرات تأثیرگذار در تغییرات سطح اساس در منطقه طبس می‌باشد.

کلید واژه‌ها: ایران مرکزی، تکنولوژیکی فعال، طبس، کوانترنیگر، کسل.

مقدمه

شواهد مورفوتکنولوژی در ارزیابی تکنولوژیکی فعال و فعالیت گسل‌ها از ارزیابی می‌تواند در بسیاری از طرق مطالعه اندازه‌گیری نواحی یا نواحی‌های رسوباتی کرد که در کنار فعالیت‌های سطح را می‌پیش نوشت. گوشته‌های لانژ‌های در سال ۱۹۹۸ (ارمنیز، ۱۹۹۸) در اغلب موارد این شواهد را رابطه بین گسل و نوع لندفرم‌ها را مشخص می‌کند. مطالعه و بررسی شواهد مورفوتکنولوژی، همراه دادن در آزمایش بررسی داده‌های لندفرم‌ها بسته، موجب شناسایی رژیم تکنولوژیکی یک منطقه می‌شود. این امر در بررسی‌های مسائل عمرانی کاربرد زیادی دارد.

بررسی نهایی لندفرم‌های کوانترنی بر روی جمله مسیر رودخانه‌ها و مخروطات‌ها، از مسائل است که می‌توان به کمک آنها برای دریافت زمین‌ساختی هر نقطه یپ بردن در پیوند (در پیوند ۲۰۰۲) زیر رودخانه‌ها و شبکه زهکشی و مخروطات‌ها نسبت به تغییرات زمین‌ساختی سیاسی حساسیت. یکی از بهترین چشم‌اندازه‌های که می‌تواند شواهد
1. strike-slip fault
نمی‌شناسی اثرات کوانتورنی (ZOTM) در پایانه و تغییرات تکنولوژی فعال سطح اساس در منطقه طبس، ایران مرکزی

(۱۳۹۲) به ارزیابی تکنولوژی فعال در دامنه جنوبی میشوند برداختن و استفاده از تارمتر کمی ZOTM مرکزی مانند
پرتابه‌های پیش‌گیری، یوپسته و گستن و شواهی مانند برگ‌های قسمی که فعالیت غسل‌ها در این ناحیه کدی کرده،
رژی و همکاران (۱۳۹۲) به تحلیل فعالیت‌های تکنولوژی در شمال رشته‌ردن پزشکی با استفاده از روش‌های
ZOTM برداختن و با بررسی شواهی مانند مخرب‌افتخاف‌های تطیف‌شده، برگ‌های قسمی، آب‌دارها، و چشمه‌های
آب گرم به فعالیت‌های منطقه از لحاظ تکنولوژی پی بردن.

یمانی و همکاران (۱۳۹۱) نقش تکنولوژی فعال در تکامل مخرب‌افتخاف‌های شمال دامنه را با استفاده از روش‌های
ZOTM مرکزی، دورنگی، و میدانی بررسی و شواهد آن را استخراج کرده. چاری و همکاران (۱۳۹۲) به مطالعه
ZOTM برداختن فعال حوزه آبیاری حصار با استفاده از شاخص‌های ZOTM برداختن و با تحلیل‌های کمی که به این
نتیجه رسیدن که حوزه پایدار به لحاظ تکنولوژی، فعالیت است. اساسی (۱۳۹۱) اثرهای ZOTM در نیم‌حرت
طولی رودخانه واقع در برخ شمال و بررسی کرده و به این ترتیب رسید که تعیین‌های در نیم‌حرت طولی رودخانه بیشتر
تبت تأثیر سنجش‌های حوزه است.

یمانی و همکاران (۱۳۹۱) به بررسی مورفولوژی تاپیه‌های دهش دفعه با استفاده از تکنولوژی ZOTM مرکزی اقدام
کرده و با استفاده از تجزیه و تحلیل شکاف زهکانی رقمی، ZOTM برداختن رقیق‌برداری تغییرات آن را تحلیل
خطرهای زهکانی، تجزیه و تحلیل آن‌ها و تجزیه و تحلیل فضایی و آماری داده‌ها به تحلیل مرکزی زهکانی منطقه
برداختن. ترتیب این طبقه‌نامه نشان داد که گسل دهش در طی دوره کوانتورنی فعال بوده است. شواهد این فعالیت از روی تفاوت
و تصویر ماهورانه استخراج شد. این شواهد شامل پرتابه‌های خط قسمی، شکاف زهکانی جابجاشدگی، الگوی
مانندی در رودخانه، طول فرستایی ارتفاع‌پذیر و مخرب‌افتخاف‌های متراکم است.

در این پژوهش از مشاهده‌های نورسنجی و مورفولوژی به منظور شرکت تکنولوژی حال و تأثیر آن بر لندفرشی
کوانتورنی تاپیه‌های طبس در ایران مرکزی استفاده شده است. هدف اصلی از این پژوهش شناسایی شکاف‌های مرکزی،
و آثار و شواهد آن است. در این مطالعه، سعی شده است تا بررسی شواهد نوزمی ساخی و لندفرشی مرکزی به‌هم‌آور
طلایس‌ها، تفاوت مخرب‌افتخاف‌ها و بازگشت‌های آبی‌ریز، پرتابه‌های قسمی، و همچنین نیب‌پوش شکاف
زهکانی خدمات در زمینه شکاف‌های شرایط نوزمی ساخی منطقه شناسایی و اربت این لندفرشی با قسمی مشخص شود.

منطقه مورد مطالعه

منطقه مورد مطالعه، به لحاظ ساختاری، در ایران زون مرکزی واقع شده است: ۵۰°۳۲′ تا ۵۰°۳۰′، ۱۴′ تا ۱۴′، ۱۹°۵۸′
۱۹°۵۵′ طول شرقي (شکل ۱). در این ناحیه سه واحد ZOTM مرکزی اصلی قابل تفکیک است: واحد کوهستان
با ارتفاع حداقل ۱۴۰۰ متر که در سمت شرق (کوه‌های شتری) و غرب (کوه‌های کمرد و چکادیات)، منطقه قرار دارد.
و این دومی پاییزه‌ای اطراف کویر طبس است که بیشتر مخرب‌افتخاف‌ها در سطح آن قرار دارد. و واحد سوم کویر طبس و
دشت‌های دمای اطراف آن با ارتفاع ۱۴۰۳ متر است. به لحاظ شرایط هیدروژنیکی رودخانه‌های منتهی در این منطقه
چاری نسبت که اغلب به صورت فصلی می‌شود. در این میان، رودخانه سرد مهم‌ترین رودخانه منطقه است که
از ارتفاعات شرقي منطقه، سنی کوه‌های شتری، سرچشمه‌های می‌گیرد و پس از عبور از شهرب طبس وارد کویر طبس می‌شود.
به لحاظ شرایط اقلیمی، منطقه تحت حاکمیت شرایط خشک و نیمه‌خشک است. با این حال، وجود ارتفاعات بلند و بر فراز در منطقه اس سبب تشکیل اقلیم نیمه‌کوهستانی در برخی روستاهای کوهستانی منطقه شده است. میانگین بارندگی شهر طبس، طی دوره آماری بین‌السالن، ۸۲/۴ میلی‌متر در سال است. بیشترین مقدار بارندگی در ماه‌های اسفند و فروردین با ۱۶/۸ میلی‌متر است. نکته جالب توجه در مورد بارندگی عدم بارش حتی یک میلی‌متر باران در ماه‌های مرداد و شهریور طی این دوره آماری است. میانگین دما نیز در منطقه ۲۳ درجه سانتی‌گراد است. دی سردرتین و مرداد گرمترین ماه بیشمار می‌باشد. اختلاف دمایی بین ماه‌های مختلف سال و همچنین شب و روز سبب فعالیت فرایندی‌ها و روش‌های متغیری و در نتیجه تولید حجم عظیمی از رسوبات شده است. جنین رسوبات اغلب به وسیله رودخانه تخلیه شده و به شکل مخروط‌اندازه در پایه‌ها انبساط شده‌اند.
بتخت و یافته‌ها
زمین‌شناسی
بتخت زایادی از ناحیه طبس، به‌لحاظ زمین‌شناسی، در شمال غربی بلوک لوت قرار دارد. ناحیه طبس شامل کوه‌های شتری در شرق و حوضه فرولشتستان فرورش دشت طبس در غرب است. در سمت غربی دشت طبس نیز کوه‌های کلمرد قرار دارد. کوه‌های شتری توده کوهستانی چین خورده - رانده هستند. در دشت طبس پهن‌رسته فرولشتستان است. کوه‌های کلمرد نیز از نوع چین خورده - رانده‌ها به‌شمار می‌روند. به‌لحاظ سه‌گانه‌نشین، نیز می‌توان این ناحیه را در سه بخش ناحیه‌ای مطالعه کرد. کوه‌های کلمرد از قدمت نزدیک سازندگان دوره زوراسیک تشکیل شده است. در این بخش، سازندگان کوربیتی مشکل از ماسه‌سنگ‌های کوربیتی دارد. همچنین از آهن‌های خاکستری قرار دارد. سازندگان کوربیتی و بخش ناحیه می‌توان این کوربیتی را به‌صورت ناحیه‌ای هم‌روی سازندگان کوربیتی قرار دادن. و شال ماسه‌سنگ سفید تا کره‌های و آهن‌های خاکستری دارد. ناحیه می‌توان به‌صورت ناحیه دوقلویتی و شیب نیز مشاهده کرد. در این ناحیه سازندگان کوربیتی ناحیه سازندگان کوربیتی مشکل از مشابه‌های ماسه‌سنگی، شیل، و ماسه‌سنگ کوربیتی ضخیم تشکیل شده است. (است. آقابنی، 1939).

واده‌های سنگی بیشتری فرولشتستان طبس بیشتر مربوط به دوران یوژونویک است که از زوراسیک میانی شروع می‌شود. اوایل کرتاسه پایان می‌یابد. در این محدوده، ماسه‌سنگ‌های رزیدان‌های کوه‌های صوبه‌های از این میکار و سیز دیده می‌شود. در برخی مناطق ماسه‌سنگ رزیدان به شکل درشت‌دانه یا کنگلومرا مشاهده می‌شود. به‌وجود می‌آید در بخش غربی دشت طبس که اغلب از کنگلومرا مشکی تشکیل شده است. سنگ‌های کرتاسه ضخیم، زبس، و مارن نیز به‌وجود در این ناحیه مشاهده می‌شود.

واده‌های سنگی کمربند چین خورده - رانده در برخی سنگ‌های فیلیکتریتی از کوربیتی آغاز و تا زوراسیک پسین و کرتاسه دنیال می‌شود (روتر و همکاران، 1958). این واده‌ها شامل سازند سردر مشکل از سنگ‌های سیلیتی با ماسه‌سنگ سیزونیک تا روشن با میان‌لاههای ماسه‌سنگی و آهنی است. سازند جمال دیگر سازند این بخش است که مشکل از سنگ‌های 1. fold-thrust mountain 2. compressional depression
زبده های جغرافیایی و طبیعی، دوره ۵۰، شماره ۳، تابستان ۱۳۹۷

246

آهکی ضخیم لایه به عقیده شکستگی‌های قراراون و پرخش از گل‌ریزی و قطعات صدف است. سازانده سرخ شیل (مجموعه‌ای از شیل‌های رسی و آهکی به رنگ قهوه‌ای از آهک‌های تیره شیل‌های آهکی) یکی از این آیین‌های ساختاری است که سازانده شباهت و همچنین ناشنجاق‌رسی همکارانه قطعات قراراون صدفی و سنجنده آهکی می‌گردد.

سازانده شری (دیوست‌های زرد روشن تا قهوه‌ای و آهکی تیره‌نگ همکارانه شیل‌های سیزشروع) سازانده بهبودی (تناوبی از سنجنده آهکی، ماساها را (رگی)، سازانده پرورده (آهکی تیره‌نگ تا ضخیم)، ماساها و مرگ و فسیل درک و همکارانه و گوها.

بیشترین (به طور همبستگی روزان سازانده قبیل قرار گرفته و شامل مانند زرد چرخ، شیل‌های رسی و ماساها با میان‌ریزهای آهکی)، سازانده گردو (در اثر میل ظلمگرده، ماساها و شیل‌های آهکی) و با در نظر گرفتن کل‌ها مشاهدهم و (اشتکی‌ها) از مهم‌ترین سازانده‌های شیل‌های و اکثری کوارتزی است که شاهد تکثیر فعال بر روی سازانده شناسته و بررسی شده است. بخش‌های زیادی از اطراف دو نبرد پوشیده از سطح مخزون کوارتزی که گردد متروک مانده و به سیله ابزارها حفر هستند. با وجود این، بهترین سطح مصرفی کوارتزی به تغییر می‌شود (آتاقیات، ۱۳۹۷).

زمن‌ساخت

تکثیر فعال ایران وابسته به جابجایی شمالی صفحه عربی و بروز انسا باید با یکباره اوراسیاست. در این مدت نصف‌النهار 66 درجه شرقی (منطقه مورد مطالعه)، بیشتر کوارتزیک تکثیری در امند شلالی- چوبی حدود 16.3 mm/yr-1 است (ورنانت و همکاران، ۱۴۰۰). این مقدار در اتمد تصفیه‌های شرق و عرض ۴۲ درجه شمایی به ۲۴ افزایش می‌یابد (ورنانت و همکاران، ۱۴۰۰: ۲۴۳ میلی‌کالار، ۱۴۰۰: سلا و همکاران، ۱۴۰۰: زمین‌ارزه‌ها). در منطقه مورد مطالعه و اطراف آن روی داده است که بینگی همیانقی، سیله‌های منطقه و تکثیر فعال این است. بر اساس داده‌های مربوط به زمین‌ارزه‌های دامنه‌های بین سال‌های ۱۳۸۷ تا ۱۳۹۳ در حدود ۶۰ میلی‌لزمهای ۳۵ تا ۳۷ هری‌سانت‌متری از منطقه مورد مطالعه به موقعیت بیست است. متوسط عمق کانال‌های این زمین‌لزمهای ۳۱ کیلو‌متری عمق زمین است (والنک، ۱۳۹۵).

ناحیه طبس در خرده‌قی ایران مرکزی قرار دارد که به وسیله‌گسل‌های طولی و اندیقی به چهار بلوک تقسیم می‌شود. بلوک طبس به وسیله‌گسل‌های طولی و اندیقی به چهار بلوک تقسیم می‌شود. ناحیه طبس به وسیله‌گسل‌های طولی و اندیقی به چهار بلوک تقسیم می‌شود. ناحیه طبس به وسیله‌گسل‌های طولی و اندیقی به چهار بلوک تقسیم می‌شود. ناحیه طبس به وسیله‌گسل‌های طولی و اندیقی به چهار بلوک تقسیم می‌شود.
شکل ۲. زمین‌ساخت منطقه مورد مطالعه. کمرنگ جنوب خورده-رانش‌شده شتری و کمرد به‌ترتیب در بخش‌های شرقی و غربی منطقه قرار دارد. مرز کوه‌های شتری با قطعه فرودگاهی طبس، کمرد به‌پارستان، و اتماد آن گسل شتری است که به صورت راندگی به سبب شرایط مکانی کمک کرده است. گل‌های ناولی بین هشتمیه زمین لردهای نیز مشاهده در منطقه مورد مطالعه است.

قلمرو جنوب خورده - رانش‌شده کمرد در شرق منطقه به وسیله گسل‌های متعددی برخ خورده است. دروازه، حوضه رسوبی آن به وسیله همین گسل‌ها کنترل می‌شده است. مهم‌ترین گسل این منطقه کمرد است. چاپ‌گیری این قلمرو میان‌گسل کمرد و نابین با مقیاس بزرگ‌تر میان گسل کمرد و پیش‌باد اکس تت‌های شرقی وغیرشی راستا‌افت و پای‌آوره است. گسل‌کمرد از نوع راستا‌افت است (آدیب، ۱۳۸۷) و جایی ضروری جایی آن ۳۰ تا ۵۰ کیلومتر تاکید شده است (روتر و همکاران، ۱۹۸۷). مانند بخش فرودگاهی طبس، در این ناحیه نیز چندین جنوب‌کشان مشاهده می‌شود که به وسیله گسل‌های متعددی در پردازشی شده‌اند.
یافته‌ها و نتایج
شواهد مخروطافکنی در ارزیابی زمین‌ساخت فعال و فعالیت گسل‌ها سنجش‌های میافی و مطمئنی به‌شمار می‌روید؛ زیرا از طریق آن‌ها ابعاد، گستره، و میزان تغییر‌شكل لندرفه‌ها مشخص می‌شود.

مخروطافکن‌ها

مخروطافکن‌ها، به عنوان یکی از پاتری‌پس اشکال‌شمول‌شکنی‌فناوری‌بهرین‌لندرفه‌های میانی کشت- و اکتش‌دین‌یکی زمین‌ساخت جنگی کوئنترو‌ان که در جهته‌‌های کوهستانی تا رشته‌‌های زمین‌شناسی تاپی‌جمه، به‌ویژه در غرب کوهستان‌های بزرگ و محدودی را نشان می‌دهد که گاهی تا بخش‌های پایین‌تر به طرف کوه‌کشیده شده و در اثر رسوب‌گزاری رودخانه‌های صافی و دامی ایجاد و گسترش یافته‌اند. این مخروطافکن‌ها از طرف گسل جهته‌‌های کوهستان به سمت پلای‌های طبس گسترش یافته‌اند (شکل ۳). این مخروطافکن‌ها در بیشتر بخش‌های جنوبی سیسم به هم پیوسته‌اند (پدیده‌ای از نظر مخروطاتی که می‌تواند در سطح‌های پلای‌های طبس به‌درپی کاهش یابد و در میان بین مخروطافکن‌های ابست‌ناهنگری‌هایی در برخی از طول‌آن‌ها مشاهده می‌شود که ناشی از رخت‌نحو چین‌ها و همچنین خطوط گسلی در بخش‌های میانی با پایین‌‌ان‌هایی است.

شکل ۳. موقعیت‌های مخروطافکن‌های انتخابی برای ثانی‌افراک‌زندی‌کن‌های فعال بر روی تصویر Sentinel 2

ارتباط مستقیم با موقعیت‌های الگوی سیستم‌های فعال سطح قبیلی است. Qf1 بناهای سطوح خیلی قبیلی است. Qf1 الگوی سطوح خیلی قبیلی است. Qf2 سطح قبیلی است. Qf1 بناهای سطوح خیلی قبیلی است. Qf1 بناهای سطوح خیلی قبیلی است. Qf1 بناهای سطوح خیلی قبیلی است.
پای توجه به معیارهای تمام مخربوطاتفکنها از یکدیگر، سه سطح مختلف مخربوطاتفکنها در حد فاصل کوهستان به می‌آید کنار، شتر و کلمرد با کویر طبیعی سناشایی شد. ترتیب و تقدم این مخربوطاتفکنها از جهتی که به طرف حوضه انتهایی دارای ناهنجاری‌هایی است؛ به‌طوری‌که در جنوب طبیعی پرگاه‌های زیادی در بخش‌های ماینی مفصل جهت کوهستان - کویر مشاهده می‌شود که بعد از آن مخربوطاتفکنی جدیدی در حال تشکیل است. مجموعه مخربوطاتفکنها یا باید نست خط سلسل طبیعی به‌صورت سرمحله‌ای پدرپرده نشان می‌دهد. به‌طوری‌که بخش انتهایی این مخربوطاتفکنها به پلای‌ای طبیعی می‌رسد. در کل، می‌توان این‌گونه بیان کرد که تکنولوژی فعالیت به اثر کاهش عمده بر مخربوطاتفکنی‌های منطقه مورد مطالعه داشته است؛ اول، کویر تکثیر و تکمیل سطح آن به‌طوری‌که به‌طوری‌که این دوم، کویر فاصله‌ای نزدیک ریزه‌افزایی به نقطه‌ای پایین‌تر از راس توبوگرافیک مخربوطاتفکنی‌ها شده است؛ و اثر آخر حفر شدید رأس بسیاری از مخربوطاتفکنی‌ها بوجود می‌آید در امتیاز جهتی کوهستانی شری‌شد است.

چنین خوردوگه‌های جوان

بررسی نقشه‌های زمین‌شناسی منطقه نشان می‌دهد که اغلب گسل‌های روان‌هاید در جهتی کوهستان قرار دارد. از طرف دیگر، مشاهدات دوربینی محدوده‌ای حد فاصل جهتی کوهستان و کویر طبیعی باگنر کوه چینی‌های پرپریت متریون و نامتقانی است که از دل سیستم‌های کویری‌ها، به‌طوری‌که مخربوطاتفکن‌های آرتیک، سر روبرویاند نمود بیت این چین‌های در حال بال‌می‌آمیزی در مسیر اغلب رودخانه‌ها که از کوهستان به طرف کویر طبیعی در جریان‌اند به‌وضع مشخص است.

طاق‌دیده‌های فلختی، فشان، طاق‌دیده‌سیرد، طاق‌دیده‌سیرد نمونه بارزی از آن است (شکل ۴). Sentinel ۲‌ که از این طاق‌دیده‌سیرد در سطح مخربوطاتفکن‌ها ایجاد و موجب به‌هم‌خوردن نظم ویژه‌ریزی‌ها به شده است. مستطیل‌های نشان‌دهنده موضعیت هر یک از طاق‌دیده‌هاست که در آگاهانهٔ دیده‌شده و دقیق بررسی شده‌اند.
فایلی نیز، برایی دریاچه‌ای به ضرورت ماحوالهای طبیعی، دوره ۵۰، شماره ۴، تابستان۱۳۹۷

پژوهش‌های جغرافیایی طبیعی، دوره ۵۰، شماره ۴، تابستان۱۳۹۷

بیانیه‌های جغرافیایی و سیاسی، دوره ۵۰، شماره ۴، تابستان۱۳۹۷

ضدٍّؼب‌جغرافیایی و سیاسی، دوره ۵۰، شماره ۴، تابستان۱۳۹۷

شکل ۵. مورفوتکتونیک طاقیدس سردر، حیان بالادمگی رسوبات نتوئن این طاقیدس در حدود ۴۰ متر از سطح مخروطافته

شکل ۶. تصویر ماهوارهای ۲ و ۳ که نشان می‌دهد این طاقیدس در شبه‌هایی از دامنه‌های غربی کوههای شری ایست، این طاقیدس در قالب ده کیلومتری شمال‌غربی واقع است. این طاقیدس در شرقی‌غربی وزنی می‌باشد. طول طاقیدس تقریباً ۵.۵ کیلومتر و پهنای آن ۱۳ کیلومتر است. در هسته طاقیدس جنس رسوبات دو دوره توزیع شد. همراه با آب‌کوبی‌های سطحی در قسمت‌های غربی و انتهایی کوههای شری دچار بالادمگی شده است. همچنین این طاقیدس در ناحیه معکوسی از نورپوشی، ناحیه زیر شکل خمیده به سمت شرق است که مرکز آن در راستای خط محوری به دلیل ماهوارهای هواپیمایی به دلیل عقب‌نشینی به صورت فریب‌بندی و لبه‌ای آن به‌ویژه در نقطه جنوبی طاقیدس به دلیل وجود بالادمگی نشان داده می‌باشد.

بزرگترین طاقیدس ایجادشده در بین رسوبات کوانتینی طاقیدس فهله‌لست که در جنوب شرق طبق قرار دارد. روند آن نخست شمال-جنوبی است. سپس شمال‌غربی-جنوب‌شرقی می‌شود و تا کوههای شری ایست، می‌باید. حضور از الگوهای کیچک‌سایه‌ای در جنوب طاقیدس نشان می‌دهد که این طاقیدس در صورت وجود رسوباتی از نظر شکل ۷. رودخانه‌ای سه‌شاخه، کنار از طریق‌های طاقیدس، موجب تشکیل نگی ظهوری شده که در ابتدا عمق آن ۱۵ متر است؛ ولی در بخش مرکزی به محور طاقیدس این میزان به ۱۴۰ متر می‌رسد.
طاقن‌دیس شمالي‌روستای فهلنچ، که به همین نام هم در نقشه مشخص شد (شکل 8)، یکی دیگر از طاقن‌دیس‌های مورد مطالعه در این پژوهش است. این طاقن‌دیس با اختلاف ارتفاع ۱۶۰ متری نسبت به زمین‌های پرآمون‌خود در بین رسواه‌های جدید کوارترنری (مخلوط‌افکته‌ها) مشاهده می‌شود. با توجه به اینکه رودخانه‌های آبی‌آبی‌تر از بخش جنوبی آن عبور می‌کند، در این بخش فرسایش‌های ورودی به داده و سپس بر روی رسواه‌های زمین‌آبی می‌شود. این بخش از تکونیکی فعال منطقه برون‌زد پیش‌تر نیست. در تصویر ماهوراهای (شکل 8)، رسواه‌های زورسیسکی با رنگ سبز مشخص شده است. فرسایش‌های بخش جنوبی این طاقن‌دیس‌گویای رشد (پاپاک) آن هپ‌مانی با فرسایش‌های ورودی است. این طاقن‌دیس نیز منابع اغلب طاقن‌دیس‌های منطقه بیشتر از رسواه‌های کانال‌ها با پرکردن و همچنین سنگ‌های چیزی نتوان تیزت شده است. این فرایندهای پیوسته به شکل فرسایش‌های باردهای سبب فرسایش شدید سطح این طاقن‌دیس شده است.
شکل ۸: نمودار زمین‌شناسی شمایی از پهناوری فلزات شرقی در دهه ساکت و میران با آمادگی طاقبندی شمایی از پهناوری این قسمت. جنس آن بیشتر از گونه‌های نیز زون است و در بخش‌های غربی آن ماسه‌سکه‌های زوراسیک نیز قابل مشاهده است. با توجه به نیم‌درج نیم‌درجه‌ای از نیز بالامدگی این طاقبندی در حدود ۱۶۰ متر است.

شکل ۹: نمودار زمین‌شناسی شمایی از پهناوری شرقی در دهه ساکت و میران با آمادگی طاقبندی شمایی از پهناوری این قسمت. جنس آن بیشتر از گونه‌های نیز زون است و در بخش‌های غربی آن ماسه‌سکه‌های زوراسیک نیز قابل مشاهده است. با توجه به نیم‌درج نیم‌درجه‌ای از نیز بالامدگی این طاقبندی در حدود ۱۶۰ متر است.
شاوهافعالیت‌گسل‌ها

گسل‌ها از عناصر مهم تکتونیکی در ایجاد انواع لندفرم‌های اولیه مانند هوست، گراین و راندگی‌اند. دینامیک‌گسل‌های امتدازه‌کننده با ساختاری واحدهای رودخانه‌ای و مخروطافکتهای به ترتیب شکل‌یافته‌ها شیت‌ها. بیشتر

گسل‌های موجود در منطقه به دو گروه از سیستم گسل نازی‌داران رون تقریبی شامل- جنوب‌است. این گسل‌ها، علاوه‌بر

مکانیسم راندگی، دارای سازوگار امتدازه‌کننده نیز می‌باشند که بیشتر در گسل‌های جنوبی کوهستان دیده می‌شوند. در

منطقه اغلب این گسل‌ها رسوبات جوان را تحت تأثیر قرار داده و موجب چین‌کردن رسوبات و بالا‌آمدن آن‌ها

شده‌اند (شکل 9).

پیش‌تر نیز اشاره شد که چندین سیستم گسل در منطقه وجود دارد. گسل‌های طبیعی و شیائی در شرق کور، طبیعی و

گسل‌های دریا و کملد در غرب آن قرار دارند. این سه گسل، به استناد گسل کم‌درد، از نوع راندگی‌ای که آثار و شواهد

آن قابل بررسی است. همچنین، در شمال کور، طبیعی و گسل طبیعی‌ای با شاخه‌های متعدد و راندگی به‌آمده در شمال، دارای

قرار دارد که در ادامه به شواهد فعالیت آن‌ها پرداخته شده است.

شواهد گسل فیض‌آباد: شکل 10 شواهد مورفوتکتونیک گسل فیض‌آباد و شاخه‌های متعدد آن را نشان می‌دهد.

توضیح اینکه گسل فیض‌آباد دارای چندگانه‌ای خاصی در منطقه است و شواهر آن نیز به استفاده از تفاوت‌های ماهوراهای

قابل رؤیت است. گسل باده‌شده از شاخه‌های متعددی تشکیل شده است. گسل‌هایی در شمال روسای طبیعی‌ای قرار

دارد و روتوش یا شقایق این گسل از نوع امتدازه‌کننده قرار دارند. این گسل از گسل باده‌شده‌ای که بستر مسیر خود

رسوبات مخروطافکتهای پنهان است؛ ولی شواهد وجود و فعالیت آن را می‌توان از طریق بررسی مقدای دقت رطوبت موجود در

دو سمت گسل و همچنین قطع‌های احداث شده در طرفان آن شناسایی کرد. از انتهای غربی این گسل، شاخه‌های

متعددی از آن انشعاب یافته (گسل‌های شمال فیض‌آباد)، که آن‌ها نیز اغلب دارای مؤلفه‌های امتدازه‌کننده است. ولی، برخلاف

گسل اصلی، در انجا از نوع راستگرد است.

همان‌طور که شکل A 10 نشان می‌دهد، فعالیت گسل شمال فیض‌آباد از نوع راست‌گرد و شواهر آن روزی شکل

مشخص است. مهم‌ترین شاخص فعالیت این تشکیل مخروطافکتهای متعددی در امتداد آن است. اما شاید بتوان فکت که

مشخص‌ترین اثر بینی بر امتداد‌الزبدان این گسل گچ‌گنجی 150 متری رسوبات مسیم‌السی و شیبی، زورسیک، در

امتداد آن است. گسل یاده‌شده از بین این رسوبات موجب ولتا و موجب گچ‌گنجی آن‌ها شده است. این رسوبات در شکل

10 (b) برنگ آی مشاهده می‌شود.

در بخش پایین این گسل، و موارد با آن گسل دیگری وجود دارد که شواهر آن در شکل‌ها a 10 مشخص شده است. این شاخص در بخش غربی وجود موجب بالا‌آمدن رسوبات مخروطافکت‌ها و درتیجه‌های متغیراندن آن‌ها شده است (شکل a). ادامه فعالیت رودخانه‌ها در این بخش سبب شکل‌گیری سطح جدید مخروطافکت‌های در پای گسل شده است. این گسل با فعالیت خود موجب پراکنش ۳۳ متری رسوبات مخروطافکتهای شده است. این امر نشان می‌دهد که گسل

یاده‌شده به لحاظ زمین‌ساختمان، فعال است. در بخش شمالی این گسل، شواهر از فعالیت راست‌گرد آن شناسایی شد

(شکل b). این گچ‌گنجی‌ها را می‌توان در حرکت امتدادی رسوبات نظیر شناسایی کرد. مقدار گچ‌گنجی در شاخه شمالی

گسل در حدود ۴۴ متر و در شاخه جنوبی ۱۴۳ متر اندام‌گیری شد.
شکل ۱۰. شواهد مورفولوگیکی کلر فیضی‌ایاد و شاخص‌های شماالی آن (۸) تصویر ماهواره‌ی Sentinel ۲. شاخص‌های کلر فیضی‌ایاد است. در این شکل جامعی ۱۲۵۰ متری رسوایی‌های زوراسیک (آب‌ریزه) در امتداد کلر مشخص است. این قسمتی از رسوایی‌های مخروطافته‌ی و تشکیل سطح کویر مخروطافته‌ی از شهیر کلر است. نیم‌حرکت نوبت‌گرایی در امتداد خط a-b یک مقدار جامعی آقی رسوایی در امتداد‌های فرعي کلر فیضی‌ایاد را نشان می‌دهد.

شواهد کلر دریا: رانگ‌گی دریا به طول تقسیم ۱۰ بین کویر طبس و کمربند چین خورده کلردن با درون شماالی- جویی قرار دارد. نکته جالب توجه در مورد این کلر فعال‌یت آن بر روی مخروطافته‌ای تشکیل شده در جبهه کوهستان کلردن است. این کلر به نحوی تمامی مخروطافته‌ای پایان‌داره را تحت تأثیر قرار داده و در امتداد خود موجب ان‌ها و از تهیه تشکیل سطح کویر مخروطافته‌ی شده است (شکل ۱۱). از طرف دیگر، فعالیت آن سبب یک‌امدگی تشکیلات ماسه‌گی زوراسیک شده است. این سازنده در شکل زیر با رنگ آبی مشخص شده‌اند. با توجه به اینکه بر روی این رسوایی‌های آب و شواهد رسوایی نوبده، می‌توان چنین نتیجه گرفت که این کلر طی کوتانتری و سپس از تشکیل مخروطافته‌ها ای جهت کلر به است. اگر کلر در کوتانتری مخروطافته‌ها در نمود قطعاً نیازمندی در سطح رسوایی‌های آب و شواهد مخروطافته‌ها و رسوایی‌های دیگری به شرایط نسبتی مشابهی می‌باشد. پس از هزمان فعالیت کلر با امتداد رسوایی‌های مخروطافته‌ها و رسوایی‌های دیگر در امتداد آن، رسوایی‌گذاری رودخانه‌ها و جریان‌های بسیار کلری مخروطافته‌ها جدیدی در بخشی شرقي آن شده است. ذكر این نکته لازم است که رسوایی‌های مخروطافته‌ها به وسیله فراورده‌های فرسایشی دچار تغییر شدند.
شکل 11. بالا‌الدمگی رسوبات مخروطاتکن‌ها (زردرنگ) و رسوبات ماسه‌سنجی زوراسیکی (آبی‌رنگ) در امتداد راندگی دریا

شواهد گسل نیسان- طبس: گسل نیسان در انتهای جنوب شرقی منطقه مدور مطالعه و در جهته کوهرتان شری قرار دارد و از نوع راندگی است. جهت شرقی- شمالی است و در آلت شمالي 20 درجه و 10 دقیقه به گسل طبس- که در انتهای رودان جنوب شرقی- شمال غربی است. متصل می‌شورد. سپس آین گسل به سمت شرق است و در مسیر خود مرتفع جای‌بایی رأس هیدرولوژیک مخروطاتکن‌ها و بالآدن رسوبات کنگلومراتی شده است. این رسوبات بعداً به وسیله فرسایش آبی خش شده‌اند. فعالیت این گسل به بالآدن رسوبات رس سنگی دوران دوم زمین‌شناسی در بین رسوبات جدیدتر کنگلومراتی در غرب و آهن شری در شرق منجر شده است. شواهد این فعالیت در شکل ۱۲ نشان داده شده است. در این شکل رسوبات رس سنگی با رنگ آبی مشخص شده که در امتداد راندگی نیسان دچار بالآدن شده‌اند.

در امتداد شمالی نصف‌النهار گسل نیسان و در بین سارنده‌های دوران دوم نایند، گسل کوچک‌دیگری وجود دارد که دارای موافقتی امتدادلی از فعالیت‌های باران است. این گسل با جهت شرقی- غربی موجب گچ‌های چین‌دارگی‌های ماسه‌سنجی، شیلی، و رس سنگ‌ها شده است. مقدار گچ‌هایی آن از روی تصویر ماهاورد شر۲۵ (شکل ۱۲.)

مختاری‌ها که در پایان‌های غربی رشته‌چین خریداری شده و تشکیل‌شده‌اند، قبل از اتصال به کوهر طبس، به سیل‌های معدودی شده‌اند تحت تأثیر قرار گرفته‌اند. یکی از این گسل‌ها راندگی‌های طبس است که از جنوب شرقی شهرب و هست و لحم ادامه می‌یابد. فعالیت آن بسیار حیله‌بر بوده و در انتهای نزد فعالیت گسل سبب بالآدن رسوبات مختاری‌ها و در نتیجه تشکیل سطوح مختلف آن همچنان گچ‌های نازن شده است. با توجه به وجود رسوبات مختاری‌ها در بخش‌های بالایی رسوبات نازن، چنین بعنوان میرسد که فعالیت این گسل هیچ‌مان و بعد از تشکیل مختاری‌ها انجام گرفته است (شکل ۱۲). در امتداد این راندگی پتگاه‌های گسلی متعددی ایجاد شده که مشرف به مختاری‌ها نشان می‌دهد. ۲۸۵
نتیجه‌گیری
بر اساس نتایج این پژوهش، اشکال و لندفرم‌های پهن‌الحاجی شامل مخروطافکنهای بخش غربی کویر حیم و بهبوده‌بخش شرقی آن تحت تأثیر شدید نیروهای تکنتونیکی گسلی و چین‌های فعال در حال بالا‌اندازه‌گیری است. کارکرد نیروهای تکنتونیکی بر مخروطافکنهای سبب ایجاد مخروطافکنهای تاپوسه و چندضلعی شده است. در اغلب موارد سطوح قبیلی دارای ارتفاع بیشتری است و رأس آن‌ها به‌طور خفیف شده است. شدت تأثیر نیروهای زمین‌ساخت مانند بالایدگی طاق‌پذیرها، که نمونه آن در طاق‌پذیر سرد دیده شد، سبب به‌رغم‌درد هم‌نظامی مخروطافکنهای چندضلعی شده است. ایجاد مناطق بسیار تأثیرگرفته به نمودار خشکش شده است. بافت‌ها و دره‌های کانی‌گیر در سطح مخروطافکنهای سرد مشاهده می‌شود. این نتایج از طبیعت و تأثیر نیروهای چین‌های متوفرانه در طبق طاق‌پذیره‌ها سبب دیگر تأثیرات مخروطافکنهای طاق‌پذیر است.

نزدیک به شکل کوزماتون به وسیله گسل روان‌زده فسا ایجاد شده است.

برگاه‌ها در طبیعت به‌صورت گالنگر پهنه‌های بالا و مواردی که در دامنه‌های غربی کوه‌های شتری و کوه‌های صاف در دامنه‌های غربی کوه‌های شتری و کوه‌های صاف در این پژوهش‌ها به سبب گسل‌های یا رشد
چین‌الهمایی گسل‌های ایجاد‌کننده پرگاه‌ها، گسل‌های ترکیزی، انتداب‌زایی و اثری از آن‌ها برپا می‌شود.

هیرندازی با خطوط گسل‌های مبتنی بر دو میانی از تلندرفیوزی کننده پرگاه‌ها، گسل‌های ترکیزی، انتداب‌زایی و اثری از آن‌ها برپا می‌شود.

داده‌ها رژیموگرامی با نموداری از رژیموگرامی با نموداری از دو میانی از تلندرفیوزی کننده پرگاه‌ها، گسل‌های ترکیزی، انتداب‌زایی و اثری از آن‌ها برپا می‌شود.

تکامل تلقین‌های اواخر کوارتری در باسک با باعث تغییرات تکتونیکی، فعال سطح اساسی در منطقه طبس، ایران مرکزی
منابع

آفاقیانی، ع. (1377). جیحه‌شناسی توپارسک/برن، ج 1، سازمان زمین‌شناسی ایران.

ازدیک، ن. (1383). زمین‌ساخت فعال و پانسلی خطر زمین‌لرز در ناحیه طبس، فصلنامه علمی-پژوهشی زمین‌شناسی و مهیج

زمین‌ساخت، ج 3، 27-45.

آفاقیانی، ع. (1377). مطالعه تمایلی شبکه‌ای کلسیم (غرب طبس)، سازمان زمین‌شناسی ایران، تشریح شماره 350 ص.

جاری، م. (1391). مطالعه زمین‌ساخت ناحیه کلارد (زمین‌ساخت شمال غرب تهران) با استفاده از شناخته‌های زمین‌شناسی، مجله پژوهش‌های زمین‌شناسی کمی، 3، 101-114.

آفاقیانی، ع. (1377). مطالعه زمین‌ساخت ناحیه کلسیم (غرب طبس)، سازمان زمین‌شناسی ایران، تشریح شماره 350 ص.

رجی، م.؛ علی‌نیا، م.؛ و حسین‌زاده، م. (1391). مطالعه و تحقیقات کلاژسیم، مجله پژوهش‌های زمین‌شناسی کمی، 3، 27-45.

رجی، م.؛ علی‌نیا، م.؛ و حسین‌زاده، م. (1391). مطالعه و تحقیقات کلاژسیم، مجله پژوهش‌های زمین‌شناسی کمی، 3، 27-45.

رازیی، م. (1394). آزمایش زمین‌ساخت فعال در دامنه جنوبی مشو داغ، مجله پژوهش‌های زمین‌شناسی کمی، 3، 158-187.

رازیی، م. (1394). آزمایش زمین‌ساخت فعال در دامنه جنوبی مشو داغ، مجله پژوهش‌های زمین‌شناسی کمی، 3، 158-187.

رازیی، م.؛ و آن‌نیا، م. (1396). آزمایش زمین‌ساخت فعال در دامنه جنوبی مشو داغ، مجله پژوهش‌های زمین‌شناسی کمی، 3، 158-187.

گزارش‌های، ا.؛ و پری‌یاری، ع. (1395). تحقیقات و تحقیقات اقیمی در تحقیقات کلاژسیم، ایران مرکزی، نشریه تحقیقات کلاژسیم 1395، 17-27.

محمدزاده، م.؛ و اسفندیاری، ع. (1394). نوآمکت معادل‌کننده‌های قربانیان در شمال شرق در همکاری ارمنیه، ایران.

پژوهش‌های جغرافیایی و اجتماعی (1395). 29-38.

محمدزاده، م.؛ و اسفندیاری، ع. (1394). نوآمکت معادل‌کننده‌های قربانیان در شمال شرق در همکاری ارمنیه، ایران.

پژوهش‌های جغرافیایی و اجتماعی (1395). 29-38.

نوآمکت، م.؛ و اسفندیاری، ع. (1394). نوآمکت معادل‌کننده‌های قربانیان در شمال شرق در همکاری ارمنیه، ایران.

پژوهش‌های جغرافیایی و اجتماعی (1395). 29-38.
تکمیل نتایج‌های واژگویی‌های طبیعی در یک منطقه از ایران از بررسی تکائی‌های فعال سطحی اساس در منطقه طبیعی ایران مرکزی

یافته‌های مقدمه‌ای می‌تواند در فیلترینگ و تغییرات تکائی‌های فعال سطحی سطح اساس در منطقه طبیعی ایران مرکزی


Bull, W.B. (2009), Tectonically Active Landscape, John Wiley & Sons.


Camp, V.E. and Griffis, R.J. (1982). Character genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran, Lithos, 3: 221-239.


