تغییرات زمانی و پراکنش مکانی شاخص ذرات معلق در دامنه جنوبی البرز مرکزی بر پایه داده‌های ماهواره‌ای

نوع مقاله : مقاله کامل

نویسندگان

گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

10.22059/jphgr.2024.383803.1007845

چکیده

آلودگی هوا یکی از چالش‌های اصلی زیست‌محیطی در کلان‌شهرهای تهران، کرج و قزوین است که به دلیل تمرکز صنعتی و جمعیتی این منطقه، سطوح بالای ذرات معلق، سلامت انسان و محیط‌زیست را تهدید می‌کند. هدف این پژوهش، تحلیل زمانی _ مکانی غلظت ذرات معلق و شناسایی مناطق بحرانی به‌صورت میانگین پنج‌ساله، تغییرات سالانه، فصلی و ماهانه است. بدین منظور، از داده‌های شاخص جذب آئروسل (AAI) ماهواره‌ای سنتینل-5 استفاده‌شده تا تغییرات مکانی _ زمانی ذرات معلق در دامنه‌های جنوبی البرز مرکزی بررسی شوند. نتایج نشان داد بیشترین غلظت ذرات معلق در نواحی جنوبی و شرقی منطقه از جمله تهران، مرز سیاسی قم و کرج مشاهده‌شده است. تحلیل کانون‌های بحرانی در سطح اطمینان 99% حاکی از تمرکز بالای آلودگی در این نواحی است. در مقابل، مناطق شمالی قزوین و ارتفاعات البرز به دلیل جریان هوای بهتر و فعالیت‌های صنعتی کمتر دارای کیفیت هوای بهتری هستند. طی بازه زمانی 1397 تا 1399، روند تغییرات غلظت ذرات معلق نزولی بوده و به حداقل مقدار خود رسیده، اما در سال 1401 به اوج خود افزایش‌یافته است. تحلیل‌های فصلی و ماهانه نشان می‌دهند که بیشترین غلظت ذرات معلق در فصل تابستان ثبت‌شده است. این الگو تأثیر عوامل جغرافیایی، تراکم جمعیت، و فعالیت‌های صنعتی بر توزیع فضایی آلاینده‌ها را برجسته می‌کند و بر اهمیت مداخلات منطقه‌ای برای مدیریت کیفیت هوا تأکید دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Temporal Changes and Spatial Distribution of Suspended Particulate Matter in the Southern Alborz Mountains Based on Satellite Data

نویسندگان [English]

  • Mohammad Naji
  • Ghasem Azizi
  • Mostafa Karimi
Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

ABSTRACT
Air pollution is one of the primary environmental challenges in the metropolitan areas of Tehran, Karaj, and Qazvin. Due to the concentration of industries and population in this region, high levels of particulate matter pose a significant threat to human health and the environment. This research aims to analyze the spatiotemporal distribution of particulate matter concentration and identify critical areas on a five-year average basis, with annual, seasonal, and monthly variations. For this purpose, Sentinel-5 satellite aerosol absorption index data were used to investigate the spatiotemporal variations of suspended particulate matter in the southern slopes of central Alborz. The results showed that the highest concentration of suspended particulate matter was observed in the south and eastern regions of the area, including Tehran, the political border of Qom, and Karaj. Analysis of hotspots at a 99% confidence level indicates a high concentration of pollution in these areas. Between 2018 and 2020, particulate matter concentrations exhibited a decreasing trend, reaching a minimum. However, in 2021, concentrations surged to their peak. Seasonal and monthly analyses revealed that the highest particulate matter levels occurred during summer. This pattern underscores the influence of geographic factors, population density, and industrial activities on the spatial distribution of pollutants, emphasizing the need for region-specific interventions to manage air quality.
Extended Abstract
Introduction
Air pollution became evident in human life when human settlements began to form as concentrated and stationary communities. Air pollution, caused by suspended particulate matter, refers to changes in the natural composition of the atmosphere due to the introduction of particles from both human and natural sources. Suspended particulate matter in the air consists of a mixture of solid and liquid particles that vary significantly in terms of shape, size, number, chemical composition, and origin. These differences cause some suspended particulate matter to have more severe health impacts than others. In megacities, the primary sources of suspended particulate matter are a combination of fossil fuel combustion from vehicles, construction equipment, furnaces, and power plants. Like many other developing countries, Iran is grappling with air pollution and is not exempt from this problem. Due to the geographical location of the study area on the southern slopes of the central Alborz Mountains and the comprehensive view of this region for spatiotemporal analysis of suspended particulate matter, the lack of air quality monitoring stations is a major challenge. This shortage is particularly noticeable in the cities of Karaj and Qazvin. Therefore, the primary objective of this study is to analyze the five-year (2018-2022) temporal and spatial patterns of suspended particulate matter in the study area. This analysis encompasses annual, seasonal, and monthly variations using the Aerosol Absorption Index (AAI) derived from Sentinel-5 satellite imagery, adopting a holistic approach to the region.
 
Methodology
To investigate the spatiotemporal variations of suspended particulate matter in the study area, the Aerosol Index (AAI) product from the Sentinel-5 satellite was utilized. Sentinel-5, the first Copernicus mission satellite, is a powerful tool for atmospheric monitoring. The Tropospheric Monitoring Instrument (Tropomi) was launched aboard Sentinel-5 on October 13, 2017. These analyses used JavaScript programming language through the Google Earth Engine web platform. The outputs obtained from this index include several results for evaluating these pollutants' temporal and spatial changes and understanding their distribution patterns in the environment. The products of this index include a five-year average of the suspended particulate matter index (from 2018 to 2022), an annual trend analysis over this period, and an analysis of seasonal and monthly variations. Subsequently, ArcMap software classified and produced a spatial map of the average concentration of suspended particulate matter. Finally, to more accurately discover the spatial distribution and intensity of particulate matter pollution, hot and cold spots, and Getis-Ord Gi* statistics were used. This analysis can help better understand the spatial distribution of air pollution, identify critical areas, and ultimately show the difference in the intensity of air pollution between the metropolitan areas of Tehran, Karaj, and Qazvin.
 
Results and discussion
A five-year average analysis of the spatial distribution of suspended particulate matter reveals a high concentration of particulates, including dust and smoke, in the southern and eastern regions, particularly around Tehran and the Qom border. This concentration is linked to anthropogenic factors such as population density, industries, and traffic. Additionally, wind patterns and topography play a role in particulate distribution. Hot spot analysis using the Getis-Ord-Gi statistic showed that the southern regions are more polluted, while the northern regions have better air quality. Moreover, the suspended particulate matter index decreased from 2018 to 2020, reaching its lowest point in 2020. However, it exhibited an increasing trend from 2021 onwards, peaking in 2022. This increase can be attributed to factors such as increased industrial activities and climatic changes. Pollution hotspots were concentrated in the southern regions of Tehran, Karaj, and Qazvin and remained relatively stable throughout this period. In other words, spatial variations in suspended particulate matter concentration have not been significant during this period, and the spatial distribution of suspended particulate matter has remained relatively stable. On the other hand, northern regions with lower population density and better air flow have cooler spots with less pollution. The results of the horizontal visibility field show that visibility at Mehrabad station has continuously decreased and has a significant correlation with the suspended particulate matter index. At Karaj station, visibility decreased from 2018 to 2020 and then increased until 2021, but decreased again in 2022. These changes indicate the significant impact of air pollution and suspended particulate matter on the reduction of horizontal visibility. Seasonal analysis of suspended particulate matter distribution and concentration, along with hotspot identification, reveals that the highest SPM concentrations occur during the summer months, particularly in the southern and central regions of Tehran, which are influenced by surrounding deserts and northerly winds. Similar patterns can be observed in autumn, while spring and winter exhibit different distributions. Hotspots linearly extend from southeast Tehran to west Qazvin, and the northern regions and Alborz mountains are cold spots with lower pollution. The monthly distribution of suspended particulate matter reveals a consistent increase from May to September, reaching its peak in July. The highest concentrations were observed in the Tehran, Karaj, and Qazvin regions, particularly along the Tehran-Qazvin freeway. This increase is attributed to stable atmospheric conditions, rising temperatures, reduced wind speeds, traffic congestion, industrial activities, accumulating pollutants, and deteriorating air quality.
 
Conclusion
A precise understanding of the impacts of particulate matter on human health and the environment requires continuous monitoring of particle concentration and size distribution on a global scale. The high variability of these particles in the atmosphere poses significant challenges for ground-based monitoring networks. Therefore, remote sensing technologies, especially Sentinel-5 satellite data, provide an efficient tool for examining suspended particulate matter's spatial and temporal distribution. The results indicate that the highest concentrations of suspended particulate matter are concentrated in Iran's central and southeastern regions, particularly around Tehran. Between 2018 and 2020, due to restrictions imposed by the COVID-19 pandemic, the concentration of suspended particulate matter decreased continuously and reached its lowest level in 2020. However, with the return to normal activities, pollutants increased again and reached their highest level in 2021. With its unique climatic conditions, summer experiences the highest concentrations of suspended particulate matter, particularly in Tehran. Dust storm sources influence this region in the surrounding deserts. Moreover, monthly variations reveal increased particulate concentrations from May to July. In-depth analyses can help evaluate the impact of pollution control policies and measures, and contribute to the development of predictive models for the future. Thus, increasing the number of ground-based monitoring stations and utilizing remote sensing technologies are essential steps for optimal air pollution management and implementing sustainable environmental policies.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Aerosol
  • Suspended particulate matter monitoring
  • Google Earth Engine
  • Environmental hazards
  • Critical Areas
  1. آزادی مبارکی، محمد و احمدی، محمود. (1399). تغییرپذیری بلندمدت ذرات معلق (PM2.5) شهر تبریز با استفاده از داده‌های سنجش‌ازدور. پژوهش‌های جغرافیای طبیعی، 52(3)، 467-480. doi: 10.22059/jphgr.2020.295385.1007474
  2. انصاری، مریم؛ احمدی، محمود و گودرزی، غلامرضا. (1401). تحلیل فضایی کیفیت هوای شهر تهران با تأکید بر ذرات معلق (PM10 و PM2.5). مخاطرات محیط طبیعی، 11(32)، 109-128. doi: 10.22111/jneh.2021.37338.1759
  3. انصاری، مریم؛ محمود، احمدی و غلامرضا، گودرزی. (1403). بررسی تغییرات زمانی-مکانی ذرات معلق (PM10) و (PM2.5) شهر تهران با استفاده از GIS (99-92).  نشریه علوم و تکنولوژی محیط‌زیست، (3)26، 35-48. Doi: 10.30495/jest.2022.61846.5441
  4. برتینا، هدایت اله؛ صیاد، غلام عباس؛ متین فر، حمیدرضا و حجتی، سعید. (1393). توزیع زمانی_مکانی ذرات معلق اتمسفری در غرب کشور بر مبنای داده‌های طیفی سنجنده MODIS. پژوهش‌های حفاظت آب‌وخاک (علوم کشاورزی و منابع طبیعی)، 21(4)، 119-137.
  5. برزگر، وحیده؛ غلامپور، اکبر و حسنوند، محمدصادق. (1400). بررسی روند تغییرات مکانی-زمانی آلاینده‌های با قطر آئرودینامیکی 2.5 و ۱۰ میکرومتر و ازن هوای شهر تبریز طی سال‌های ۱۳۹۶-۱۳۸۵. سلامت و محیط‌زیست، 14(2)،284-261.
  6. رنجبر، محسن و باهک، بتول. (1398). تغییرات زمانی و مکانی آلاینده‌های هوا با استفاده از GIS (موردمطالعه: نیمه شمالی شهر تهران. جغرافیای ایران، 17(60)، 72-85.
  7. رئیس‌پور، کوهزاد. (1400). ارزیابی زمانی-مکانی غلظت ستونی ذرات معلق (PM2.5) ناشی از رویدادهای گردوغباری در ایران با استفاده از داده‌های باز تحلیل NASA/MERRA-2. فیزیک زمین و فض، 47(2)،^ 333-354. doi: 10.22059/jesphys.2021.316499.1007273
  8. زینالی، بتول؛ ملانوری، الهام؛ صفری، شیوا. (1402). تحلیل زمانی و مکانی آلایندهای هوا در استان آذربایجان شرقی. جغرافیای طبیعی، 15(62)، 89-104.
  9. شاه بیک، اعظم؛ پورمظاهری، راحله و طاهری، احمد. (1401). بررسی روندهای زمانی و مکانی تغییرات آلاینده‌های هوا در کلان‌شهر کرج. محیط‌زیست و توسعه فرابخشی،7 (76)،27-44. https://doi.org/10.22034/envj.2022.154827
  10. عزیزی، قاسم؛ ناجی، محمد و کریمی، مصطفی. (1403). تحلیل همدیدی-دورسنجی تداوم آلودگی هوا در دامنه‌های جنوبی البرز (تهران، البرز و قزوین). جغرافیا و پایداری محیط، 14(2)، 65-82. doi: 10.22126/ges.2024.10555.2752
  11. عسگری، علی. (1390). تحلیل‌های آمار فضایی با Arc GIS. چاپ اول. تهران: انتشارات سازمان فناوری اطلاعات و ارتباطات شهرداری تهران.
  12. عبدالعظیمی، هادی؛ فرهادی، هادی؛ روستا، حسین و مختاری، نسرین. (1402). پایش غلظت دی‌اکسید نیتروژن در دوره کووید-19 با استفاده از داده‌های ماهواره سنتینل-5 (مطالعه موردی: کلان‌شهر شیراز). مخاطرات محیط طبیعی، 12(38)، 113-130. doi: 10.22111/jneh.2023.45267.1949
  13. غریبی، شیوا و شایسته، کامران. (1400). کاربرد تصاویر ماهواره‌ای سنتینل 5 در شناسایی کانون‌های آلاینده‌های هوا در ایران. نشریه تحلیل فضایی مخاطرات محیطی، 8 (3)، 123–138. http://jsaeh.khu.ac.ir/article-1-3117-fa.html
  14. قنادی، محمدامین؛ شهری، متین و مرادی، امیررضا. (1401). پایش آلودگی هوا با استفاده از تصاویر ماهواره سنتینل 5- (مطالعه موردی: شهرهای بزرگ صنعتی ایران). فصلنامه علوم محیطی، 20 (2)، 81–98. Doi 10.52547/envs.2022.1026
  15. منصور مقدم، محمد؛ نقی پور، نگار؛ روستا، ایمان و غفاریان مالمیری، حمیدرضا.  (1401). پایش و پیش‌بینی زمانی و مکانی گردوغبار معلق در جو در استان قزوین با استفاده از سامانه گوگل ارث انجین. مجله مدیریت بیابان،10(1) ، 77-98.  Doi: 10.22034/jdmal.2022.544754
  16. مرکز آمار ایران. (1395). داده‌ها و اطلاعات آماری، برگرفته از: www.amar.org.ir
  17. میری، پروین؛ راشکی، علیرضا و سپهر، عادل. (1396). بررسی تغییرات زمانی و مکانی شاخص‌های گردوغبار در شرق خراسان بر پایه داده‌های ماهواره‌ای. جغرافیا و مخاطرات محیطی، (3)6،1-20. doi: 10.22067/geo.v6i3.54464
  18. ناجی، محمد. (1403). واکاوی همدیدی_دورسنجی آلودگی هوا در دامنه‌های جنوبی البرز مرکزی، پایان‌نامه کارشناسی ارشد، استاد راهنما قاسم عزیزی، رشته آب‌وهوا شناسی سینوپتیک، دانشگاه تهران.
  19. نادیان، مرضیه؛ میرزایی، روح‌اله و سلطانی محمدی، سعید. (1397). کاربرد شاخص خودهمبستگی فضایی موران در تحلیل فضایی-زمانی آلاینده PM2.5 (مطالعه موردی: شهر تهران). مجله مهندسی بهداشت محیط 5(3)، 213-197.
  20. Abdolazimi, H., Farhadi, H., Roosta, H., & Mokhtari, N. (2023). Monitoring of the Nitrogen Dioxide Concentration in the Period of Covid-19 Using Sentinel-5 Satellite Data (Case Study: Shiraz Metropolis). Journal of Natural Environmental Hazards, 12(38), 113-130. doi: 10.22111/jneh.2023.45267.1949 [In Persian]
  21. Amanollahi, J., Abdullah, A. M., Ramli, M. F., & Pirasteh, S. (2011). Real time assessment of haze and pm 10 aided by modis aerosol optical thickness over klang valley, Malaysia. World Applied Sciences Journal, 14(SPL ISS 1), 08–13.
  22. Ansari, M., Ahmadi, M., & Goudarzi, G. (2022). Spatial analysis of air quality in Tehran with emphasis on particulate matter (PM2.5 and PM10). Journal of Natural Environmental Hazards, 11(32), 109-128. doi: 10.22111/jneh.2021.37338.1759 [In Persian]
  23. Ansari, M., Ahmadi, M., & Goudarzi, G. (2024). Temporal-spatial analysis of particulate matter (PM10 and PM2.5) in Tehran using GIS (2013-2020). Environmental Science and Technology Journal, 26(3), 35-48. https://doi.org/10.30495/jest.2022.61846.5441[In Persian]
  24. Asgari, A. (2011). Spatial statistical analyses with ArcGIS (1st ed.). Tehran Municipality Information and Communication Technology Organization Press. [In Persian]
  25. Azadi Mubaraky, M., & Ahmadi, M. (2020). Long-term variability of particulate matter (PM2. 5) in Tabriz using remote sensing data. Physical Geography Research Quarterly, 52(3), 467-480. doi: 10.22059/jphgr.2020.295385.1007474[In Persian]
  26. Azizi, G., Naji, M., & Karimi, M. (2024). Synoptic-Remote Sensing Analysis of the Persistence of Air Pollution in the Southern Slopes of Alborz (Tehran, Alborz and Qazvin Metropolitan). Geography and Environmental Sustainability, 14(2), 65-82. doi: 10.22126/ges.2024.10555.2752 [In Persian]
  27. Bartina, h., Sayyad, Gh.A., Matinfar H.R., & Hojati, S. (2014). Spatio-temporal distribution of atmospheric aerosols in western part of Iran based on MODIS spectral data. Water and Soil Conservation, 21(4), 119-137. [In Persian]
  28. Barzeghar, V., Gholampour, A., & Hassanvand, M. S. (2021). Spatiotemporal trend of ambient air particulate matter with aerodynamic diameter less than 2.5 and 10 μm and ozone in Tabriz city, Iran, during 2006–2017. ijhe, 14 (2), 261-284. [In Persian]
  29. Chuanglin, F., Zhenbo, W., & Guang, X. U. (2016). Spatial-temporal characteristics of PM 2. 5 in China : A city-level perspective analysis. 26(41590842), 1519–1532. https://doi.org/10.1007/s11442-016-1341-9
  30. Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
  31. Fan, H., Zhao, C., & Yang, Y. (2020). A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 220(April 2019). https://doi.org/10.1016/j.atmosenv.2019.117066
  32. Farhadi, H., & Najafzadeh, M. (2021). Flood risk mapping by remote sensing data and random forest technique. Water (Switzerland), 13(21). https://doi.org/10.3390/w13213115
  33. García, M. Á., Sánchez, M. L., Ríos, A. D. L., Pérez, I. A., Pardo, N., & Fernández-duque, B. (2019). Analysis of PM10 and PM2. 5 Concentrations in an Urban Atmosphere in Northern Spain. Archives of Environmental Contamination and Toxicology, 76, 331–341. https://doi.org/10.1007/s00244-018-0581-3
  34. Gautam, S., & Brema, J. (2020). Spatio-temporal variation in the concentration of atmospheric particulate matter: A study in fourth largest urban agglomeration in India. Environmental Technology and Innovation, 17. https://doi.org/10.1016/j.eti.2019.100546
  35. Ghannadi, M. A., Shahri, M., & Moradi, A. (2022). Air pollution monitoring using Sentinel-5 (Case study: big industrial cities of Iran). Environmental Sciences, 20(2), 81-98. doi: 10.52547/envs.2022.1026 [In Persian]
  36. Gharibi, S., & Shayesteh, K. (2021). Application of Sentinel 5 satellite imagery in identifying air pollutants Hotspots in Iran. Journal of Spatial Analysis Environmental Hazards, 8 (3),123-138. [In Persian]
  37. Goudarzi, G., Shirmardi, M., Naimabadi, A., Ghadiri, A., & Sajedifar, J. (2019). Science of the Total Environment Chemical and organic characteristics of PM 2. 5 particles and their in-vitro cytotoxic effects on lung cells : The Middle East dust storms in Ahvaz, Iran. Science of the Total Environment, 655, 434–445. https://doi.org/10.1016/j.scitotenv.2018.11.153
  38. Guo, J. P., Zhang, X. Y., Che, H. Z., Gong, S. L., An, X., Cao, C. X., Guang, J., Zhang, H., Wang, Y. Q., Zhang, X. C., Xue, M., & Li, X. W. (2009). Correlation between PM concentrations and aerosol optical depth in eastern China. Atmospheric Environment, 43(37), 5876–5886. https://doi.org/10.1016/j.atmosenv.2009.08.026
  39. Herrera-Estrada, J. E., Diffenbaugh, N. S., Wagner, F., Craft, A., & Sheffield, J. (2018). Response of electricity sector air pollution emissions to drought conditions in the western United States. Environmental Research Letters, 13(12). https://doi.org/10.1088/1748-9326/aaf07b
  40. Iran Statistics Center. (2016). Statistical data and information. Retrieved from www.amar.org.ir [In Persian]
  41. Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment International, 42, 10–19. https://doi.org/10.1016/j.envint.2011.03.003
  42. Kok, T. M. C. M. De, Driece, H. A. L., Hogervorst, J. G. F., & Briede, J. J. (2006). Toxicological assessment of ambient and traffic-related particulate matter : A review of recent studies. 613, 103–122. https://doi.org/10.1016/j.mrrev.2006.07.001
  43. Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., & Lu, Z. (2015). U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmospheric Environment, 110(2), 130–143.
  44. Mansourmoghaddam, M., Naghipur, N., Rousta, I., & Ghaffarian, H. R. (2022). Temporal and Spatial Monitoring and Forecasting of Suspended Dust Using Google Earth Engine and Remote Sensing Data (Case Study: Qazvin Province). Desert Management, 10(1), 77-98. doi: 10.22034/jdmal.2022.548083.1372 [In Persian]
  45. Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24), 4029–4037.
  46. Miri, P., Rashki, A., & Sepehr, A. (2017). Spatial and Temporal Variability of Aerosol Indices over East Khorasan, Iran based on Satellite Observation. Journal of Geography and Environmental Hazards, 6(3), 1-20. doi: 10.22067/geo.v6i3.54464 [In Persian]
  47. Mohammadi, Z., Rahimi, D., Najafi, M. R., & Zakerinejad, R. (2024). The impact of environmental degradation and climate change on dust in Khuzestan province, Iran. Natural Hazards, 120(5), 4329–4348. https://doi.org/10.1007/s11069-023-06368-1
  48. Nadian, M., Mirzaei, R., & Soltani Mohammadi, S. (2018). Application of Moran'sI Autocorrelation in Spatial-Temporal Analysis of PM2.5 Pollutant (A case Study: Tehran City). jehe, 5 (3), 197-213[In Persian]
  49. Naji, M. (2024). Synoptic-remote sensing analysis of air pollution in the southern slopes of the Central Alborz. Supervisor: Q. Azizi, Master's thesis, University of Tehran. [In Persian]
  50. Raispour, K. (2021). Evaluation of Spatiotemporal Column Particulate Matter Concentration (PM2.5) Due to Dust Events in Iran Using Data from NASAN / MERRA-2 Reanalysis Model. Journal of the Earth and Space Physics, 47(2), 333-354. doi: 10.22059/jesphys.2021.316499.1007273 [In Persian]
  51. Ranjbar, M., & Mahak, B. (2019). Temporal and spatial changes of air pollutants using GIS (Case study: Northern half of Tehran). Geography, 17(60), 72-85. [In Persian]
  52. Saw, G. K., Dey, S., Kaushal, H., & Lal, K. (2021). Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, 259(2), 118514. https://doi.org/10.1016/j.atmosenv.2021.118514
  53. Shahbazi, H., Taghvaee, S., Hosseini, V., & Afshin, H. (2016). A GIS based emission inventory development for Tehran. Urban Climate, 17, 216–229. https://doi.org/10.1016/j.uclim.2016.08.005
  54. Shahbeik, A., Pourmazaheri, R., & Taheri, A. (2022). Investigation of Temporal and Spatial Trends of Air Pollutants in the City of Karaj. Environment and Interdisciplinary Development, 7(76), 27-44. doi: 10.22034/envj.2022.154827 [In Persian]
  55. Shikwambana, L., Mhangara, P., & Mbatha, N. (2020). Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. International Journal of Applied Earth Observation and Geoinformation, 91(April), 102130. https://doi.org/10.1016/j.jag.2020.102130
  56. Tiwari, S., Chate, D. M., Srivastava, M. K., Safai, P. D., Srivastava, A. K., Bisht, D. S., & Padmanabhamurty, B. (2012). Statistical evaluation of PM10 and distribution of PM1, PM2.5, and PM10 in ambient air due to extreme fireworks episodes (Deepawali festivals) in megacity Delhi. Natural Hazards, 61(2), 521–531. https://doi.org/10.1007/s11069-011-9931-4
  57. Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., … Levelt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120(2012), 70–83. https://doi.org/10.1016/j.rse.2011.09.027
  58. Wang, Y., Ying, Q., Hu, J., & Zhang, H. (2014). Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013 – 2014. Environment International, 73, 413–422. https://doi.org/10.1016/j.envint.2014.08.016
  59. Xu, J., Jiang, H., Xiao, Z., Wang, B., Wu, J., & Lv, X. (2016). Estimating Air Particulate Matter Using MODIS Data and Analyzing Its Spatial and Temporal Pattern over the Yangtze Delta Region. Sustainability, 8(9), 932. https://doi.org/10.3390/su8090932
  60. Zeinali, B., Melanouri, E., & Safari, S. (2023). Temporal and spatial analysis of air pollutants in East Azerbaijan Province. Journal of Physical Geography, 15(62), 89-104. [In Persian]