بررسی و پیش‌بینی تغییرات دمای ایستگاه اراک براساس مدل ریزمقیاس نمایی آماری

نوع مقاله : مقاله کامل

نویسندگان

1 استاد، اقلیم‌شناسی، دانشگاه زنجان

2 دانشجوی دکتری آب‌وهواشناسی شهری، دانشگاه زنجان

چکیده

افزایش جمعیت و نیز افزایش مصرف انرژی از یک‌سو و گرمایش جهانی از سوی دیگر باعث تغییرات دمایی و اغلب افزایش دما در شهرها شده است. در چند دهة اخیر، رشد شهرنشینی در ایران شدت بالایی داشته و جمعیت مراکز استان‌ها به شدت افزایش یافته است. شهر اراک، به عنوان یکی از مراکز صنعتی کشور، با این پدیده مواجه بوده است. در این نوشته رفتار دمایی شهر اراک با استفاده از آزمون آماری و ترسیمی مان- کندال و نیز با به‌کارگیری رگرسیون خطی و غیرخطی بررسی شد. یافته‌ها نشان داد که روند دمای ایستگاه اراک غیرخطی است؛ یعنی، آماره‌های دمایی اراک از سال 1961 تا 1990 با نوسان‌هایی، روندی کاهشی و از سال 1991 تا 2010 روندی افزایشی توأم با نوسان داشته است. به‌منظور آشکارسازی وضعیت دمایی اراک در آینده از مدل ریزمقیاس‌نمایی آماری (SDSM) استفاده شد. یافته‌های این بخش از پژوهش نشان داد که دمای اراک روندی افزایشی خواهد داشت، به گونه‌ای که دمای میانگین، کمینه و بیشینة اراک به ترتیب از 98/13، 11/7 و 83/20 تا سال 2030 به حدود 5/14، 8/7 و 2/23 درجة سلسیوس خواهد رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation and prediction of the temperature changes of Arak station based on statistical downscaling model

نویسندگان [English]

  • Hossein Asakere 1
  • Bahram Shahmansouri 2
1 Professor of Climatology, Department of Geography, University of Zanjan, Iran
2 PhD Candidate in Climatology, University of Zanjan, Iran
چکیده [English]

Introduction
The city population, in particular at the industrialized cities and centers of provinces, has increased dramatically in Iran during recent decades. Arak city as center of Markazi Province is among those industrialized cities which has experienced a fast increase in population. These changes in population numbers tend to increase consuming water resources as well as increasing in energy resources demand. This situation is accompanied with global warming and caused an increase in temperature values during recent decades.
In current research, in order to understand the nature of temperature changes in Arak, the temperature trends were analyzed for previous and future states based on SDSM. Because, according to IPCC (2014: 563) it is vital to understand the nature of climate change in order to reduce its negative effects.
 
Materials and Methods
In order to study temperature trends during recent decades in Arak, the temperature data selected based on having sufficient temporal records to carry out the investigation and also sufficient accuracy that extend from 1961 until the end of the 2010 as the longest period of accessible temperature data record in Iran. The data of daily temperature is derived from Meteorological Organization of Iran. An initial check was carried out in order to test the quality of data. The NCEP/NCAR data and HadcM3 under scenario A2 and B2 are also used in current study in order to model and predict the temperature values. 
In order to discover the negative/positive trends of the data, the temperature data were analyzed by Mann-Kendal trend test. In order to fit a proper model on each character of Arak's temperature, linear and non-linear regression models were used. The best models are chosen based on conformation of ordinary statistics and indices.
All the results are performed by SPSS and MATLAB applications and depicted in figures and shapes. Statistical downscaling model is used to simulate and predict the temperature of Arak station using SDSM software.
 
Results and Discussion
According to our study, the best fitted models on annual mean temperature, annual average of minimum temperature, and annual average of maximum temperature are cubic and quadratic models, while these models are fitted on absolute maximum temperature for spring and winter. There is no non-linear model to be fitted on minimal absolute temperature, due to the huge variability in this parameter. Based on correlation and partial correlation analyses which are used in current study, the explanatory variables for annual mean temperature are Sea Level Pressure (SLP), 500 hpa geopotential heights (500hpa HGT). The explanatory variables for mean maximum temperature are Vorticity at 500 hpa, 500hpa HGT, relative humidity at 500 hpa, and mean temperature at 2m. Ultimately, explanatory variables for mean minimal temperature are SLP, 500hpa HGT, relative humidity at 500 hpa, and also mean temperature at height of 2 meters. After calibrating with using estimated models and abovementioned variables for period of 1961 to 2010, the data were evaluated. It became clear that the difference between simulated data with recorded data is very low. Then, based on two scenario A2 and B2 the temperature variables of Arak are predicted. Based on scenario A2 and B2 during 100 years there will be about 0.24 and 0.19 degree centigrade increase in annual mean temperature, while 0.25 and 0.2 degree centigrade will increase the mean maximum temperature. The mean minimum temperature will be increased by 0.19 and 0.16 degree centigrade.
 
Conclusion
According to our findings, the Arak temperature trends are non-linear during the study period (1961 to 2010). Average of minimal temperature during summer shows an increasing trend. Therefore, energy and water demanding are increased in summer. Absolute values of maximum temperature of winter and summer have recently increased during last two decades. Therefore, the snow melts will have accrued very fast during winter and spring in future. The results of current research and several other studies performed in Iran and also in global scale have testified temperature increasing of cities and also the IPCC reports on increasing trends at least during the recent five decades and continue the increase at least during next two decades. This temperature increasing trends can also influence other climate variables such as evaporation, rainfall, relative humidity and so on and accordingly can affect human activities such as consuming energy, and human environment such as air pollution. Accordingly, the environmental management as well as environmental planning should consider this reality. 

کلیدواژه‌ها [English]

  • Arak
  • linear and non-linear regression
  • Statistical Downscaling Model (SDSM)
  • trend detection
آبکار، ع.؛ حبیب‌نژاد، م.؛ سلیمانی، ک. و نقوی، ﻫ. (1392). بررسی میزان کارآیی مدل SDSM در شبیه‌سازی شاخص‌های دمایی مناطق خشک و نیمه‌خشک، فصلنامة علمی- پژوهشی مهندسی آبیاری و آب، 4(14): 1-14.
امیدوار، ک. و خسروی، ی. (1389). بررسی برخی عناصر اقلیمی در سواحل شمالی خلیج‌فارس با استفاده از آزمون کندال، مجلة جغرافیا و برنامه‌ریزی محیطی، 21(2)، پیاپی 38: 33-46.
رضایی، م.؛ نهتانی، م. و مقدم‌نیا، ع. (1393). بررسی کارآیی مدل ریزمقیاس آماری SDSMدر پیش‌بینی پارامترهای دمایی دو اقلیم خشک و نیمه‌خشک، پژوهشنامة مدیریت حوضة آبخیز، 10: 117-131.
سبزی‌پرور، ع.؛ سیف، ز. و قیامی، ف. (1392). تحلیل روند دما در برخی از ایستگاه‌های مناطق خشک و نیمه‌خشک کشور، جغرافیا و توسعه، 30: 117-138.
عباسی، ف.؛ ملبوسی، ش.؛ حبیبی نوخندن، م. و اثمری، م. (1389). ارزیابی تغییر اقلیم زاگرس در دورة 2010-2039 با استفاده از مدل ریزمقیاس نمایی داده‌های مدل گردش عمومی جو، نشریة پژوهش‌های اقلیم‌شناسی، 1(1-2): 4-20.
عزیزی، ق. و روشنی، م. (1387). مطالعه تغییر اقلیم در سواحل جنوبی دریای خزر به روش من-کندال، مجلة پژوهش‌های جغرافیایی، 64: 13-28.
عساکره، ح. (1390). مبانی اقلیم‌شناسی آماری، انتشارات دانشگاه زنجان، زنجان.
علیجانی، ب.؛ محمودی، پ.؛ سلیقه، م. و ریگی‌چاهی، ا. (1390). بررسی تغییرات کمینه‌ها و بیشینه‌های سالانة دما در ایران، فصلنامة تحقیقات جغرافیایی، 26(3) پیاپی 102: 101-122.
فلاح قالهری، غ. (1393). ریزمقیاس نمایی آماری داده‌های اقلیمی، انتشارات سخن‌گستر، مشهد.
قرمزچشمه، ب.؛ رسولی، ع.؛ رضای‌بنفشه، م.؛ مساح‌بوانی، ع. و خورشیددوست، ع. (1393). بررسی اثر عوامل مورفواقلیمی بر دقت مدل ریزمقیاس گردانی (SDSM). نشریة علمی- پژوهشی مهندسی و مدیریت آبخیز، 6(2): 155-164.
مدرسی، ف.؛ عراقی‌نژاد، ش.؛ ابراهیمی، ک. و خلقی، م. (1389). بررسی منطقه‌ای پدیدة تغییر اقلیم با استفاده از آزمون‌های آماری در حوضة آبریز گرگانرود- قره‌سو، نشریة آب وخاک، 24(3): 476-489.
مسعودیان، س.ا. (1383). بررسی روند دمای ایران در نیم‌سدة گذشته، مجلة جغرافیا و توسعه، بهار وتابستان، ص 89-106.
معصومی، ش. (1391). سالنامة آماری استان مرکزی1390، استانداری استان مرکزی، اراک، ص. 269-276.
منتظری، م. (1393). واکاوی زمانی مکانی دماهای سالانة ایران طی دورة 1961-2008، جغرافیا و توسعه، 36: 209-228.
میرموسوی، س.ح. و صبوری، ل. (1393). مطالعة روند بارش برف در شمال غرب ایران. جغرافیا و برنامه‌ریزی محیطی، 25(3): 119-136.
نتر، ج. و واسرمن، و. (1374). آمار کاربردی، ترجمة ع. عمیدی ، جلد دوم، تهران، مرکز نشر دانشگاهی.
نجاتی، ر. و اشرافی، ح. (1393). آمار کاربردی به زبان ساده (ویراست 22SPSS)، دانشگاه تربیت دبیر شهید رجایی، تهران.
یارنال، ب. (1390). اقلیم شناسی همدید وکاربرد آن در مطالعات محیطی، ترجمة س. مسعودیان، چاپ دوم، انتشارات دانشگاه اصفهان، اصفهان.
Abassi, F.; Malbusi, S.; Habibi Nokhandan, M. and Asmari, M. (2010). Climate Change Assessment over Zagros during 2010-2039 by Using Statistical Downscaling of ECHO- G Model, Climatological Research Institute, 1: 4-20.
Abkar, A.;. Habibnajad, M.; Solaimani, K. and Naghavi, H.(2013). Investigation efficiency SDSM model to simulate temperature indexes in arid and semi-arid regions, Irrigation & Water Engineering, 14: 1-14.
Alijani, B.; Mahmoudi, P.; Salighe, M. and Rigichahi, A. (2011). Study of annual maximum and minimum temperatures changes  in iran, Geography Research Quarterly, 102: 101-122.  
Azizi, G. and Roushani, M. (2008). Investigation of Change of Some Climatic Elements in North Coast of Persian Gulf Using Kendal Test, Geography Rese Quarterly, 64: 13-28.
Asakereh, H. (2011). Fundamentals of Statistical Climatology, Zanjan University.
Fallah Ghalhari, G.A. (2014). Statistical downscaling of climatic, Sokhangostar, Mashhad.
Fiseha, B.M.; Melesse, A.M; Romano, E., Volpi, E. and Fiori, A. )2012). Statistical Downscaling of of Precipitation and Temperature for the Upper Tiber Basin in Central Italy, International Journal Water Sciences; 1(3): 1-14
Gagnon, S.; Singh, B.; Rousselle, J. and Roy, L. (2005). An Application of the Statistical DownScaling Model (SDSM) to Simulate Climatic Data for Streamfl ow Modelling in Québec, Canadian Water Resources Journal, 30(4): 297–314 .
Ghermezcheshmeh, B.; Rasuli, A.A.; Rezaei-Banafsheh, M.; Massah, A.R. and Khorshiddust, M.A. (2014). Investigation Impact of Morpho-Climatic Parameters on Aaccuracy of SDSM, Journal of Watershed Engineering and  Management, 6(2): 155-164.
IPCC (2014). Climate Change 2014, Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Working Group II Contribution to the Fifth Assessment Report of the  Intergovernmental Panel on Climate Change, Edited by, Christopher B. Field, Vicente R. Barros, David Jon Dokken, Katharine J. Mach, Michael D. Mastrandrea, pp.544-563.
IPCC (2007). Climate Change 2007 The Physical Science Basis, Susan Solomon, Martin Manning, Melinda Marquis, Kristen Averyt, Melinda M.B. Tignor, Henry LeRoy Miller, Jr, Zhenlin Chen, pp. 536.
Koukidis, E.N. and Berg, A.A. (2009). Sensitivity of the Statistical DownScaling Model (SDSM) to Reanalysis Products, Atmosphere-Ocean, 47(1): 1–18.
LeeTitus, M.; Sheng, J.; Greatbatch, R. and Folkins, I. (2013). Improving Statistical Downscaling of General Circulation Models, Atmosphere-Ocean, pp. 1–13.
Liu, Z.; Xu, Z.; Charles, S.P.; Fub, G. and Liu, L. (2012). Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China, Internationaljournal of Climatology Int. J. Climatol, 31: 2006–2020.
Mahmood, R. and Babel, S.M. (2014). Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin, Weather and Climate Extremes, 5-6: 56–66.
Masomi, S. (2012). Statisticalyearbook of central province, central province governor, Arak.
Masoudian, S.A. (2004). Temperature Trend In Iran The Last Half Century, Geography and Development, 2(3): 89-106.
Mirmousavi, S.H. and Saboor, L. (2014). Study of snow precipitation changes trend in North West of Iran, Quarterly Geography and Environmental Planning, 28(3): 119-136.
Modaresi, F.; Araghinejad, SH.; Ebrahimi, K. and Kholghi, K. (2010). Regional Assessment of Climate Change Using  Statistical Tests: Case Study of Gorganroud-Gharehsou Basin, Journal of Water and Soil, 24(3): 476-489.
Montazeri, M. (2014). Time-Spatial Investigation of Iran’s Annual Temperatures During 1961-2008, Geography and Development, 36: 209-228.
Nejati, R. and Ashrafi, H.R. (2014). Statistics Made Simple (spss 22), Shahid Rajaee Teacher Training University.
Neter, J., Wasserman, W. and Whitmore, G.A. (1993). Applied Statistics, Translated by A. Amidi, Iran University Publishers.
Omidvar, K. and Khosravi, Y. (2014). Investigation of Change of Some Climatic Elements in North Coast of Persian Gulf Using Kendal. Test, Quarterly Geography and Environmental Planning, 28(2): 33-46.
Pervez, Md, S.; Geoffrey, M; Henebry, G.M. (2014). Projections of the Ganges–Brahmaputra precipitation Downscaled from GCM predictors, Journal of Hydrology, 517: 120–134.
Rebetez, M. and Reinhard, M. (2008). Monthly air temperature trend in Switzerland 1901-2000 and 1975-2004, Theor. Appl. Climatol, 91: 27-34.
Rezaei, M., Nohtani, M., Abkar, A., Rezaei, M. and Rigi, M. (2014). Performance Evaluation of Statistical Downscaling Model (SDSM) in Forecasting Temperature Indexes in Two Arid and Hyper Arid Regions (Case Study:Kerman and Bam), Journal ofWatershed Management Research, 5(10): 117-131.
Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N. and Rafaj, P. (2011). RCP 8.5A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109: 33–57.
Sabziparvar, A.; Seif, Z. and Ghiami, F. (2012). Analysis of Temperature changes Trend in Arid and Semi-arid Regions, Geography and Development, 30: 117-138.
Schlunzen, K.H.; Hoffmann, P.; Rosenhagen, G. and Riecke, W. (2010). Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg, International Journal of Climatology, 30: 1121–1136.
Souvignet, M.; Gaese1, H.; Ribbe, L.; Kretschmer, N. and Oyarzún, R. (2010). Statistical downscaleing of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed, Hydrological Sciences Journal– Journal des Sciences Hydrologiques, 55: 41-57.
Toreti, A. and Desiato, F. (2008). Temperature trend over Italy from 1961- 2004, Theor. Appl.Climatol, 91: 51-58.
Tryhorn, L. and DeGaetano, A. (2011). A comparison of techniques for downscaling extreme precipitation over the Northeastern United States, International Journal of Climatology; Int. J. Climatol, 31: 1975–1989.
Yarnal, B. (1993). Synoptic Climatology in Environmental Analysis, Translate by Masoudian, S.A., Esfahan University.