درستی سنجی متغیر‌های دما و بارش مدل‌های CMIP5 در ایران تحت پروژه‌های CORDEX و NEX-GDDP

نوع مقاله : مقاله کامل

نویسندگان

1 گروه اقلیم‌شناسی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

باتوجه‌به اینکه تاکنون هیچ مطالعه‌ای به ارزیابی توأمان روش‌های ریزگردانی NEX-GDDP و CORDEX- WAS جهت درستی‌سنجی خروجی مدل‌های CMIP5 در ایران برای فرا سنج‌های دما و بارش انجام نشده است؛ لذا این مطالعه برای نخستین‌بار در ایران مقایسه عملکرد مدل MPI-ESM-LR از سری مدل‌های CMIP5 را برای متغیرهای دما و بارش با رویکرد توأمان روش ریزگردانی دینامیکی و آماری برای دوره تاریخی 2005-1980 موردمطالعه قرار می‌دهد. جهت درستی‌سنجی، آماره‌های MBE، RMSE و r مورداستفاده قرار گرفت. برای برآورد شیب روند داده‌ها در سری زمانی، از روش ناپارامتریک سنس استفاده می‌شود. نتایج نشان داد در پروژه کوردکس میزان اریبی 34/0- درجه سلسیوس و در پروژه NEX-GDDP میزان اریبی 46/0- درجه سلسیوس ثبت شده است که بیانگر عملکرد بهتر مدل MPI-ESM-LR تحت پروژه ریزگردانی دینامیکی کوردکس در مقایسه با پروژه آماری NEX-GDDP در شبیه­سازی دما می­باشد. در هر دو پروژه بیشینه دما در سواحل جنوب و کمینه دما در ارتفاعات شمال غرب کشور شبیه­سازی شده است. در شاخص MBE پروژه NEX-GDDP با اریبی 60/2- میلی‌متر در مقایسه با پروژه کوردکس با اریبی 21/8- میلی‌متر، کاهش اریبی را نشان می‌دهد که بیانگر عملکرد بهتر مدل MPI-ESM-LR در پروژه NEX-GDDP نسبت به پروژه کوردکس در شبیهسازی بارش می‌باشد. بیشینه بارش در هر دو پروژه در ارتفاعات زاگرس و کمینه بارش در جنوب شرق کشور شبیه­سازی شده است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Validation of temperature and precipitation variables of CMIP5 models in Iran under CORDEX-WAS and NEX-GDDP projects

نویسندگان [English]

  • Fatemeh Taghavinia 1
  • Batool Zeinali 1
  • Abbasali Dadashi-Roudbari 2
1 Department of Climatology, Faculty of Social Sciences, Mohaghegh Ardabili University, Ardabil, Iran
2 Department of Geography, Faculty of Literature and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

ABSTRACT
No study has so far evaluated the NEX-GDDP and CORDEX-WAS downscaling methods to validate the output of CMIP5 models in Iran for temperature and precipitation parameters. Therefore, this study is the first in Iran to compare the MPI-ESM-LR model performance from the CMIP5 model series for temperature and precipitation variables with the combined approach of dynamic and statistical downscaling methods for the historical period of 1980-2005. The verification was performed using the MBE, RMSE, and R statistics. The slope of the data trend in the time series is estimated using Sen’s non-parametric method. The findings revealed that degrees of bias equal to -0.34 and -0.46 C were recorded in CORDEX and NEX-GDDP projects, respectively, indicating the better performance of the MPI-ESM-LR model under the CORDEX dynamic downscaling project than the NEX-GDDP statistical project in temperature simulation. In both projects, the maximum and minimum temperatures were simulated in Iran's southern coasts and north-western heights. The MBE index shows a decreased bias in the NEX-GDDP project (-2.60 mm) compared to the CORDEX project (-8.21 mm), suggesting the better performance of the MPI-ESM-LR model in the NEX-GDDP project than the CORDEX project in precipitation simulation. Both projects' maximum and minimum precipitations were simulated in the Zagros highlands and the southeast of Iran, respectively.
Extended abstract
Introduction
Currently, most of the research on climate change relies on GCMs. These models are an important tool for simulating and predicting past and future climate changes in various research fields. To develop a climate change-resistant strategic plan, policymakers and decision-makers should be informed of the potential changes in the forecasted future climate. To this aim, there is a need to emphasize an in-depth study of uncertainty using CMIP5 models with CORDEX-WAS dynamic downscaling and NEX-GDDP statistical methods on a regional scale. No study has so far evaluated the NEX-GDDP and CORDEX-WAS downscaling methods to validate the output of CMIP5 models in Iran for temperature and precipitation parameters. Therefore, this study is the first in Iran to compare the MPI-ESM-LR model performance from the CMIP5 model series for temperature and precipitation variables with the combined approach of dynamic and statistical downscaling methods for the historical period of 1980-2005.
 
Methodology
To verify the accuracy of the air temperature and precipitation data extracted from the MPI-ESM-LR model from the CMIP5 model series, 49 synoptic stations were selected in Iran during the statistical period of 1980-2005 (according to the historical data of CORDEX-WAS and NEX-GDDP projects). The verification was performed using the statistics of mean bias error (MBE), root mean square error (RMSE), and Pearson correlation coefficient (r). The simulated temperature and precipitation data were evaluated by the selected model with station data (observed data). This research uses CORDEX-WAS range data with a spatial resolution of 0.44 arc degrees, the RCA4 model for RCM, and the r1i1p1 ensemble. The output is also obtained from the NEX-GDDP downscaling project for Iran according to what is implemented for CORDEX-WAS. The slope of the data trend in the time series is estimated using Sen’s non-parametric method.
 
Results and discussion
In the temperature variable, the MPI-ESM-LR model shows a correlation coefficient 0.99 in both projects. The RMSE indexes are equal to 0.78 and 0.51 °C in CORDEX and NEX-GDDP projects, respectively. Degrees of bias equal to -0.34 and -0.46 C were recorded in CORDEX and NEX-GDDP projects, respectively, indicating the better performance of the MPI-ESM-LR model under the CORDEX dynamic downscaling project than the NEX-GDDP statistical project in temperature simulation. The temperature downtrend slopes in each decade were calculated at -0.848 °C in the synoptic station, -1.191 °C in the CORDEX project, and -1.075 °C in the NEX-GDDP project. In both projects, the maximum and minimum temperatures were simulated in Iran's southern coasts and north-western heights. In the precipitation variable of the NEX-GDDP project, correlation coefficients of 0.85 and 0.65 were obtained in the CORDEX and NEX-GDDP projects, respectively. The RMSE index shows error values of 9.53 mm in the NEX-GDDP project and 6.52 mm in the CORDEX project. The MBE index shows a decreased bias in the NEX-GDDP project (-2.60 mm) compared to the CORDEX project (-8.21 mm), suggesting the better performance of the MPI-ESM-LR model in the NEX-GDDP project than the CORDEX project in precipitation simulation. Except for a precipitation downtrend of -11.766 mm per decade in the synoptic station, the uptrend precipitation slops of 8.513 mm and 12.524 mm were simulated in CORDEX and NEX-GDDP projects, respectively, in each decade. Both projects' maximum and minimum precipitations were simulated in the Zagros highlands and the southeast of Iran, respectively.
In the temperature variable in the CORDEX project, the high correlation coefficients in the majority of regions in Iran indicate the high accuracy of the model in temperature simulation. Under this project, the highest error in the RMSE index was observed in Chabahar and Jask in the southeast of Iran, and the lowest error was noticed in the extreme western slopes of Zagros. In the MBE index, the performance of the model in temperature simulation under the mentioned project shows a temperature overestimation or a positive bias in the southern coasts and western highlands and a negative bias in the Alborz highlands and low-altitude interior regions. In the NEX-GDDP project, a correlation of 0.99 exists between observed and simulated data in the whole country. In the RMSE index, the maximum error is visible on the west coast of the Caspian Sea and Ardabil, and the minimum error is seen in Jask, Chabahar, Iranshahr, and Zahedan (the southeast of Iran). In the MBE index, a positive bias was recorded in the same regions and on the eastern coasts of the Caspian Sea, versus a negative bias recorded in other regions of Iran.
In the precipitation variable under the CORDEX project, the correlation coefficient statistics in the heights of Binalud and Aladagh range from 0.99 to 0.92 in the north-east of the country and the heights of the western Zagros and up to 5. 0 in the Caspian Sea coasts and the coastal areas of Oman (southeast of Iran). In the CORDEX project, the maximum negative bias in the MBE index was observed in the western shores of the Caspian while the maximum positive bias belonged to Tabriz and Khorramabad. In the RMSE index, the minimum error was seen in Zabul and Birjand in eastern Iran. In the NEX-GDDP project, a good correlation coefficient of > 89% was obtained in 81.5% of the country, indicating that the simulated data is close to the real data. In the RMSE index, the maximum error was recorded on the country's northern coasts. The minimum error is between 6.8 and 1.4 mm in Alborz heights and pitfalls in the central and eastern parts of the country. Caspian coasts show the highest negative bias or underestimation in the MBE index. The maximum positive bias was estimated in the Zagros highlands, central pitfalls, and the northeastern highlands of the country.
 
Conclusion
Climate change-driven disasters can be prevented to a large extent, provided that warnings of adverse weather conditions are taken seriously. The need to pay attention to risk management and increasing resilience in climate change conditions caused by global warming can account for a road map in this context. Given Iran's mostly dry climate, temperature and precipitation changes necessitate an integrated management plan for water resources and a long-term vision of the relevant managers and officials in the country. This is because climate change leads to challenges in various environmental, agricultural, food security, social, economic, cultural, political, and international fields.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Iran
  • Precipitation
  • Temperature
  • CORDEX-WAS
  • NEX-GDDP
  1. احمدی، حمزه؛ فلاح قالهری، غلامعباس و باعقیده، محمد. (1398). پیش‌نگری اثرات تغییر اقلیم بر بارش فصلی مناطق سردسیر ایران بر اساس سناریوهای واداشت تابشی RCP. فیزیک زمین و فضا، 45(1)، 177-196. doi: 10.22059/jesphys.2018.256956.1007003
  2. داداشی رودباری، عباسعلی. (1399). واکاوی وردایی زمانی - مکانی الگوهای قائم و افقی ریزگردها و ارزیابی بازخوردهای آب‌وهوایی آن در ایران. رساله دکتری اقلیم‌شناسی. به راهنمایی محمود احمدی. تهران: دانشگاه شهید بهشتی، دانشکده علوم زمین.
  3. احمدی، محمود و داداشی رودباری، عباسعلی. (1395). ارزیابی آهنگ رفتار زمانی - مکانی بارش در دو دهه اخیر در ایران. پژوهش‌های جغرافیای طبیعی، 48(3)، 465-484. doi: 10.22059/jphgr.2016.60102
  4. زرین، آذر و داداشی رودباری، عباسعلی. (1401). پیش‌نگری شدت بارش در ایران با به‌کارگیری رویکرد همادی چندمدلی با استفاده از داده‌های مقیاس‌کاهی شده NEX-GDDP. ژئوفیزیک ایران، 16(1)، 47-68. doi: 10. 0499/ijg.2021.300366.1353.
  5. زرین، آذر و داداشی رودباری، عباسعلی. (1400). پیش‌نگری دمای ایران در آیندة نزدیک (2021-2040) بر اساس رویکرد همادی چندمدلی CMIP6. پژوهش‌های جغرافیای طبیعی، 53(1)، 75-90. doi: 10.22059/jphgr.2021.308361.1007551
  6. صادقی، علی و احمدی، حمزه. (1401). ارزیابی تبخیر - تعرق مرجع ماهانه در ایران بر اساس برونداد مدل‌های دینامیکی ریزمقیاس شده پروژه CORDEX-MNA. پژوهش‌های جغرافیای طبیعی، 54(2)، 185-202. doi: 10.22059/jphgr.2022.332856.1007652
  7. عبدلی، سعدی؛ عزیزی، قاسم و برنا، رضا. (1400). ارزیابی تغییرات دمای هوا و بارش در منطقه پربارش نیمه غربی ایران تحت شرایط تغییر اقلیم. فصلنامه جغرافیای طبیعی، 14(53)، 1-18. DOR: 20.1001.1.20085656.1400.14.53.6.7
  8. عسگری، الهه؛ باعقیده، محمد؛ کامیار، اصغر؛ انتظاری، علیرضا و حسینی، مجید. (1399). چشم‌انداز تغییرات اقلیم‌شناختی دما و بارش در دامنة CORDEX جنوب آسیا (مطالعۀ موردی: حوضۀ آبخیز دز). جغرافیا و توسعه ناحیهای، 18(1)، 225-252. doi: 10.22067/geography. V 18i1.84891
  9. علیجانی، بهلول. (1389). آب‌وهوای ایران. چاپ هشتم. تهران: انتشارات دانشگاه پیام‌نور.
  10. غلام‌پور شمامی، یوسف؛ مجنون حسینی، ناصر؛ بذرافشان، جواد؛ شریف‌زاده، فرزاد و کانونی، همایون (1398). ارزیابی بارش و تبخیر - تعرق پتانسیل گیاه مرجع در شرایط اقلیم فعلی و تغییر اقلیم آینده تحت پروژه CORDEX در نواحی عمده تولید محصولات دیم استان کردستان. تحقیقات آب‌وخاک ایران، 50(10)، 2583-2594. doi: 10.22059/ijswr.2019.285043.668255
  11. کامیار، اصغر؛ موحدی، سعید و یزدان‌پناه، حجت الله. (1396). چشم‌انداز دمای کمینه و بیشینه استان اصفهان در افق 2050-2017. پژوهش‌های اقلیم‌شناسی، 8(29)، 37-54.
  12. میراکبری، مریم؛ مصباح‌زاده، طیبه؛ محسنی ساروی، محسن؛ خسروی، حسن و مرتضایی فریزهندی، قاسم. (1397). ارزیابی کارایی مدل سری CMIP5 در شبیه‌سازی و پیش‌بینی پارامترهای اقلیمی بارندگی، دما و سرعت باد (مطالعه موردی: استان یزد). پژوهش‌های جغرافیای طبیعی، 50(3)، 593-609. doi:10.22059/jphgr.2018.248177.1007156
  13. یعقوب‌زاده، مصطفی و رمضانی، یوسف. (1398). ارزیابی مدل‌ها و سناریوهای گزارش پنجم تغییر اقلیم در برآورد دما و بارش ایستگاه بیرجند. پژوهش‌های اقلیم‌شناسی، 10(37)، 87-100.
  14. Abdoli, S., Azizi, G., & Borna, R. (2021). Evaluation of air temperature and precipitation changes in the rainy region of western Iran under climate change conditions. Physical Geography Quarterly, 14(53), 1-18. DOR: 20.1001.1.20085656.1400.14.53.6.7. [In Persian].
  15. Aggarwal, S. P., Thakur, P. K., Garg, V., Nikam, B. R., Chouksey, A., Dhote, P. & Bhattacharya, T. (2016). Water resources status and availability assessment in current and future climate change scenarios for beas river basin of north western Himalaya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, xxlll ISPRS Congress, Prague, Czech Republic, 1389-1396. DOI: 10.20944/preprints201609.0016. v 1.
  16. Ahmadi, H., & Azizzadeh, J. (2020). The impacts of climate change based on regional and global climate models (RCMs and GCMs) projections (case study: Ilam province). Modeling Earth Systems and Environment, 6, 685–696. DOI: 10.1007/s40808-020-00721-0.
  17. Ahmadi, H., Fallah Ghalhari, G. A., & Baaghideh, M. (2019). Projection of Climate Change Impacts on Seasonal Precipitation in Iranian Cold Regions Based on Radiative Forcing Scenarios (RCP). Journal of the Earth and Space Physics, 45(1), 177-196. doi: 10.22059/jesphys.2018.256956.1007003. [In Persian].
  18. Ahmadi, H., Baaghideh, M., & Dadashi-Roudbari, A. (2021). Climate change impacts on pistachio cultivation areas in Iran: a simulation analysis based on CORDEX-MENA multi-model ensembles. Theoretical and Applied Climatology, 145, 109–120. DOI: 10.1007/s00704-021-03614-z.
  19. Ahmadi, H., Rostami, N., & Dadashi-Roudbari, A. (2020). Projected climate change in the Karkheh Basin, Iran, based on CORDEX models. Theoretical and Applied Climatology, 142, 661–673. DOI: 10.1007/s00704-020-03335-9.
  20. Ahmadi, M., & Dadashi, A. (2016). Assessment of the tracks of spatio-temporal precipitation, Iran. Physical Geography Research Quarterly, 48(3), 465-484. doi: 10.22059/jphgr.2016.60102. [In Persian].
  21. Alijani, b. (2010). Weather of Iran. 8th edition, Tehran: Payam Noor University Press. [In Persian].
  22. Asgari, E., Baaghideh, M., Kamyar, A., Entezari, A., & Hosseini, M. (2020). An Overview of Climate Changes of Temperature and Precipitation in the CORDEX Range of South Asia (Case Study: Dez Watershed). Journal of Geography and Regional Development, 18(1), 252-225. doi: 10.22067/geography. V 18i1.84891. [In Persian].
  23. Bhuyan, M., Islam, M., & Bhuiyan, M. (2018). A Trend Analysis of Temperature and Rainfall to Predict Climate Change for Northwestern Region of Bangladesh. American Journal of Climate Change, 7, 115-134. DOI: 10.4236/ajcc.2018.72009.
  24. Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B. et al. (2017). Changing climate shifts timing of European floods. Science, 357 (6351), 588-590. doi: 10.1126/science. Aan 2506.
  25. Chen, H. P., Sun, J. Q. & Li, H. X. (2017). Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmospheric and Oceanic Science Letters, 10 (6), 403-410. https://doi.org/10.1080/16742834.2017.1367625.
  26. Collier, M. A., Jeffrey, S. J., Rotstayn, L. D., Wong, K. K. H., Dravitzki, S. M., & Moeseneder, C., (2011). The CSIRO-Mk3.6.0 Atmosphere-Ocean GCM: participation in CMIP5 and data publication. 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011, 2691-2697.
  27. Dadashi-Roudbari, A. (2020). Time-spatial verdaic analysis of vertical and horizontal patterns of fine dust and evaluation of its climate feedbacks in Iran. D. thesis in meteorology, Supervisor: Mahmoud Ahmadi, Tehran: Shahid Beheshti University, Faculty of Earth Sciences. (In Persian)
  28. Dawson, T. P., Perryman, A. H., & Pinardi, X. T. M. (2016). Modelling impacts of climate change on global food security. Climatic Change, 134(3), 429-440. DOI: 10.1007/s10584-014-1277-y.
  29. Di Sante, F., Coppola, E. & Giorgi, F. (2021). Projections of river floods in Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations. J. Climatol, 41, 3203–3221. https://doi.org/10.1002/joc.7014.
  30. Ghahreman, N., Tabatabaei, M. & Babaeian, I. (2015). Investigation of uncertainty in the IPCC AR5 precipitation and temperature projections over Iran under RCP scenarios. Poster on Cop21-Cmp11, Paris, 30 November to Friday, 11 December 2015, 1-11. DOI: 10.13140/RG.2.1.1808.3683.
  31. Ghalami, V., Saghafian, B. & Raziei, T. (2023). An appraisal of the NEX-GDDP precipitation dataset across homogeneous precipitation sub-regions of Iran. Theoretical and Applied Climatology, 152, 347–369. DOI: 10.1007/s00704-023-04399-z.
  32. Gholampour Shemami, Y., Majnoun Hosseini, N., bazrafshan, J., sharifzadeh, F., & Kanouni, H. (2020). Assessing Precipitation and Reference Potential Evapotranspiration in the Current Climate and under CORDEX Climate Change Projections in Major Drylands Region of Kurdistan Province. Iranian Journal of Soil and Water Research, 50(10), 2583-2594. doi: 10.22059/ijswr.2019.285043.668255. [In Persian].
  33. Giorgetta, M.A., Jungclaus, J., & Reick, Ch. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Adv. Model. Earth Syst, 5, 572–597. https://doi.org/10.1002/jame.20038.
  34. Gnitou, G. T., Tan, G., Niu, R. & Nooni, I. K. (2021). Assessing Past Climate Biases and the Added Value of CORDEX-CORE Precipitation Simulations over Africa. Remote Sens, 13(11), 1-26. https://doi.org/10.3390/rs13112058.
  35. Gosling, S. N. & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371-385. https://doi.org/10.1007/s10584-013-0853-x.
  36. Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W. et al. (2020). Sensitivity analysis‐based automatic parameter calibration of the VIC model for streamflow simulations over China. Water Resources Research, 56(1), 1-19. https://doi.org/10.1029/2019WR025968.
  37. Hamed, M. M., Nashwan, M. S. & Shahid, S. (2022). Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmospheric Research, 265, 1-14. DOI: 10.1016/j.atmosres.2021.105927.
  38. Hasheminasab, F. S., Rahimi, D., Zakerinejad, R. & Kropáček, J. (2022). Assessment of climate change impact on surface water: a case study—Karoun River Basin, Iran. Arabian Journal of Geosciences, 15(904), 1866-1875. DOI: 10.1007/s12517-022-09969-5.
  39. IPCC (2014). In: Field C. B., Barros V. R., Dokken D. J., Mach K. J., Mastrandrea M. D., Bilir T. E, et al. (2014). White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1581 PP. https://www.ipcc.ch/report/ar5/wg2/.
  40. IPCC, (2013). Climate Change 2013: The Physical Science Basis, Cambridge University Press, 1535 pp. https://www.ipcc.ch/report/ar5/wg1/.
  41. Jena, P., Azad, S. & Rajeevan, M. N. (2016). CMIP5 Projected Changes in the Annual Cycle of Indian Monsoon Rainfall. Climate, 4(1), 1-11. https://doi.org/10.3390/cli4010014.
  42. Kamworapan, S. & Surussavadee, C. (2019). Evaluation of CMIP5 Global Climate Models for simulating climatological Temperature and Precipitation for Southeast Asia. Advances in Meteorology, 1-18. https://doi.org/10.1155/2019/1067365.
  43. kamyar, A., Movahedi, S., & Yazdanpanah, H. (2017). Projection of Minimum and Maximum Air Temperatures in Isfahan Province during 2050-2017. Journal of Climate Research, (29), 37-54. [In Persian].
  44. Karypidou, M. C., Sobolowski, S. P., Katragkou, E., Sangelantoni, L. & Nikulin, G. (2022). The impact of latera boundary forcing in the CORDEX-Africa ensemble over southern Africa. Geoscientific Model Development, 348, 1-36. https://doi.org/10.5194/gmd-16-1887-2023.
  45. Kumar, P. V. A. & Agarwal, S. (2020). Statistical Downscaling of Temperature and Precipitation Using SDSM. Proceeding of National Conference on Emerging Trends in Civil Engineering during 26th – 27th June, K L University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, 856-862.
  46. Kumar, P., Kumar, S., Barat, A., Sarthi, P. P. & Sinha, A. K. (2020). Evaluation of NASA’s NEX-GDDP-simulated summer monsoon rainfall over homogeneous monsoon regions of India. Theoretical and Applied Climatology, 141, 525–536. DOI: 10.1007/s00704-020-03188-2.
  47. Luhunga, P., Joe, B. & Kahimba, F. (2016). Evaluation of the performance of CORDEX regional climate models in simulating present climate conditions of Tanzania. South. Hemisph, Earth Syst. Sci, 66, 32-54. DOI: 10.22499/3.6601.005.
  48. Mami, A., Raimonet, M., Yebdri, D., Sauvage, S., Zettam, A. & Sanchez Perez, J. M. (2021). Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: case of the Tafna basin (North-Western Africa). Home International Journal of Global Warming, 23(1), 58-90. DOI: 10.1504/IJGW.2021.112489.
  49. Mazdiyasni, O. & AghaKouchak, A. (2015). Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences, 112(37), 11484-11489. https://doi.org/10.1073/pnas.1422945112.
  50. Mirakbari, M., Mesbahzadeh, T., Mohseni Saravi, M., Khosravi, H., & Mortezaie Farizhendi, G. (2018). Performance of Series Model CMIP5 in Simulation and Projection of Climatic Variables of Rainfall, Temperature and Wind Speed (Case Study: Yazd). Physical Geography Research Quarterly, 50(3), 593-609. doi: 10.22059/jphgr.2018.248177.1007156. [In Persian].
  51. Mutayoba, J. & Kashaigili, E. (2017). Evaluation for the performance of the CORDEX regional climate models in simulating rainfall characteristics over mbarali river catchment in the Rufiji Basin, Tanzania. Geosci. Environ. Prot, 5(4), 139–151. DOI: 10.4236/gep.2017.54011.
  52. Panjwani, S., kumar, S. N. & Ahuja, l. (2021). Simulation performance of selected global and regional climate models for temperature and rainfall in some locations in India. Journal of Agrometeorology, 22(4), 407-418. DOI: 10.54386/jam. V 22i4.443.
  53. Pathak, R., Sahany, S., Mishra, S. K. & Dash, S. K. (2019). Precipitation biases in CMIP5 models over the South Asian Region. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-45907-4.
  54. Rahimi, D., Hasheminasab, F. S. & Abdollahi, K. (2019). Assessment of temperature and rainfall changes in the Karoun River basin. Theoretical and Applied Climatology, 137, 2829–2839. DOI: 10.1007/s00704-019-02771-6.
  55. Sadeghi, A., & Ahmadi, H. (2022). Evaluation of monthly reference evapotranspiration in Iran based on the output of CORDEX-MNA project downscaled dynamic models. Physical Geography Research Quarterly, 54(2), 185-202. doi: 10.22059/jphgr.2022.332856.1007652. [In Persian].
  56. Safari, B., Joseph, N. S. & Asher, S. (2022). Evaluation of CORDEX-CORE regional climate models in simulating rainfall variability in Rwanda. International Journal Of climatology, 43(2), 1112-1140. DOI: 10.1002/joc.7891.
  57. Shi, Y., Wang, G. & Gao, X. J. (2018). Role of resolution in regional climate change projections over China. Climate Dyn, 51, 2375–2396. https://doi.org/10.1007/s00382-017-4018-x.
  58. Soroush, F., Fathian, F., Hasheminasab, F. S. & Kahya, E. (2020). Trends in pan evaporation and climate variables in Iran. Theoretical and Applied Climatology, 142, 407–432. DOI: 10.1007/s00704-020-03262-9.
  59. Supari, S., Tangan, F., Liew, J., Faye, C., Jing, X. C., Sheau, T. N., Ester, S., et al. (2020). Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environmental Research, 184, 1-23. DOI: 10.1016/j.envres.2020.109350.
  60. Tegegne, G., Melesse, A. M. & Alamirew, T. (2021). Projected changes in extreme precipitation indices from CORDEX simulations over Ethiopia, East Africa. Atmospheric Research, 247, 1-15. https://doi.org/10.1016/j.atmosres.2020.105156.
  61. Thakur, A., Mishra, P. K., Nema, A. K., Thakur, H. P. & Singh, A. (2020). Future Precipitation Changes over the Wainganga Sub-Basin using NEX-GDDP High-Resolution Statistically Downscaled Data. Organized by Indian Institute of Technology Roorkee and National Institute of Hydrology, Roorkee during February 26-28, 1-11.
  62. Usman, M., Ndehedehe, C. E., Manzanas, R., Ahmad, B. & Adeyeri, O. E. (2021). Impacts of Climate Change on the Hydrometeorological Characteristics of the Soan River Basin, Pakistan. Atmosphere, 12(6), 792, 1-15. https://doi.org/10.3390/atmos12060792.
  63. Usta, D. F. B., Teymouri, M. & Chatterjee, U. (2022). Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios. Arabian Journal of Geosciences, 15(416), 1-16. DOI: 10.1007/s12517-022-09709-9.
  64. Raghavan, S., Hur, J. & Liong, S. Y. (2018). Evaluations of NASA NEX-GDDP data over Southeast Asia: present and future climates. Climatic Change, 148, 503–518. DOI: 10.1007/s10584-018-2213-3.
  65. Wang, X., Jiang, D., & Lang, X. (2019). Temperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 Models. Atmos. Sci, 43, 1158–1170. doi: 10.3878/j.issn.1006-9895.1810.182251.
  66. Xu, L. & Wang, A. (2019). Application of the Bias Correction and Spatial Downscaling Algorithm on the Temperature Extremes from CMIP5 Multimodel Ensembles in China. Earth and Space, 6, 2508-2524. https://doi.org/10.1029/2019EA000995.
  67. Yaghoobzadeh, M., & rahmani, Y. (2020). Evaluation models and scenarios of the climate change Fifth Report in estimation temperature and precipitation of Birjand Station. Journal of Climate Research, (37), 87-100. [In Persian].
  68. Yang, X., Wood, E. F., Sheffield, J., Ren, L., Zhang, M. & Wang, Y. (2018). Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. Journal of Hydrometeorology, 19(3), 609-623. DOI: 10.1175/JHM-D-17-0180.1.
  69. zarrin, A., & Dadashi-Roudbari, A. (2021). Projected changes in temperature over Iran by 2040 based on CMIP6 multi-model ensemble. Physical Geography Research Quarterly, 53(1), 75-90. doi: 10.22059/jphgr.2021.308361.1007551. [In Persian].
  70. zarrin, A., & Dadashi-Roudbari, A. (2022). Projection of precipitation intensity in Iran using NEX-GDDP by multi-model ensemble approach. Iranian. Journal of Geophysics, 16(1), 47-68. doi: 10.30499/ijg.2021.300366.1353. [In Persian].
  71. Zhao, S., He, W., Dong, T., Zhou, J., Xie, X., Mei, Y., Wan, S. & Jiang, Y. (2021). Evaluation of the Performance of CMIP5 Models to Simulate Land Surface Air Temperature Based on Long-Range Correlation. Frontiers in Environmental Science, 9, 1-15. https://doi.org/10.3389/fenvs.2021.628999.