تحلیل گروه‌های زمانی حاکم بر تغییرات زمانی-مکانی بارش سالانه ایران

نوع مقاله : مقاله کامل

نویسندگان

1 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران

2 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه زنجان، زنجان، ایران

چکیده

در پژوهش حاضر به تحلیل گروه‌های زمانی بارش60 ساله ایران با استفاده ازتحلیل روند و همسازها پرداخته شد. دراین راستا از داده های ECMWF- ERA5 با تفکیک مکانی 25/0* 25/0 برای بازه زمانی 2022-1963بهره گرفته شد. ابتدا میانگین و ضریب تغییرات بارش 60 ساله کشور بررسی و سپس با برازش مدل رگرسیون خطی به روش پارامتری، روند بارش وارسی شد. در نهایت با استفاده از تحلیل طیفی، همسازهای مربوط به بارش سالانه استخراج گردید. با توجه به نتایج پژوهش، گستره روند منفی معنادار بارش طی دوره آماری وسیع‌تراز گستره روند مثبت معنادار بوده است. روند منفی بارش عموماً منطبق بر نواحی شمالغرب، شمال و شرق محدوده مطالعاتی و روند مثبت معنادار منطبق بر زاگرس مرتفع است. خروجی حاصل از تحلیل طیفی که در مطالعات دیگر مشهود نبود گویای نقش کمرنگ همسازهای معنادار درنواحی شمالی ساحلی کشور است. همچنین نیمه جنوبی کشور عمدتاً تحت تاثیر چرخه‌های 7-2 ساله و نواحی غربی عموماً تحت سیطره سیکل‌های درازمدت 20-7 ساله است. براین اساس الگوهای مربوط به این چرخه ها را می‌توان به عوامل محلی، سیستم‌های کلان مقیاس جوی، همسایگان و گاهی ترکیب تمام عوامل که سبب تنوع چرخه‌ها در یک مکان شده است، نسبت داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Time Groups Governing the Temporal-Spatial Changes of Iran's Annual Rainfall

نویسندگان [English]

  • Zeaynab shamohamadi 1
  • Dariush Yarahmadi 1
  • Hossein Asakereh 2
  • hamid mirhashemi 1
1 Department of Geography, Faculty of Humanities, Lorestan University, Khorramabad, Iran
2 Department of Geography, Faculty of Humanities, Zanjan of University, Zanjan, Iran
چکیده [English]

ABSTRACT
Precipitation is one of the elements and complex climatic processes in time and space and is particularly important due to its vital role. In the present study, the analysis of the 60-year rainfall time groups of Iran was done using trend analysis and coefficients. In this regard, ECMWF-ERA5 data with a spatial resolution of 0.25*0.25 was used from 1963 to 2022. First, the country's 60-year rainfall average and change coefficient were investigated, and then the rainfall trend was checked by fitting a linear regression model using a parametric method. Finally, by using spectral analysis, coefficients related to annual precipitation were extracted. According to the research results, the scope of the significant negative trend of precipitation during the statistical period was wider than that of the significant positive trend. About 69 percent of the country has a negative annual trend with a decrease of -0.6 mm of precipitation per year, and 30 percent of the country has positive precipitation and an increase of 0.2 mm of precipitation per year. The negative trend of precipitation generally corresponds to the northwest, north and east areas of the study area, and the significant positive trend corresponds to the high Zagros. The output of the spectrum analysis, which was not evident in other studies, shows the weak role of significant isomers in the northern coastal areas of the country. Also, the southern half of the country is mainly influenced by 2-7 year cycles and the western regions are generally dominated by long-term 7-20 year cycles. Therefore, the patterns related to these cycles can be attributed to local factors, macro-scale atmospheric systems, neighbors and sometimes the combination of all factors that caused the diversity of cycles in one place
Extended Abstract
Introduction
Today, several methods are used to investigate temporal and spatial changes in precipitation and obtain its obvious and hidden relationships. This research reveals the obvious and hidden relationships by analysing the trend of obvious changes and the analysis of harmonics to investigate the hidden and obvious relationships between Iran's rainfall over 60 years. In this regard, ECMWF-ERA5 data with a spatial resolution of 0.25*0.25 was used from 1963 to 2022. Then, by fitting the linear regression model with the parametric method, the precipitation trend was checked. Finally, using spectral analysis, coefficients related to annual precipitation were extracted. The investigation of the rainfall trend showed that the country's rainfall during the studied period has been decreasing in most areas, and about 11% of the decreasing changes have statistical justification. Only 0.2 areas of the country have had a significant positive trend in the areas corresponding to the high Zagros. The results of the spectral analysis of co-factors show the weak role of significant co-factors in the northern coastal strip and the country's central regions. However, the south, southeast, east, and southwest of the study area are mainly under the influence of 2-7 year cycles. Precipitation patterns related to these co-factors can be attributed to the influence of local factors and processes, nearby water zones, and atmospheric circulation elements and are generally dominated by the connection patterns from Doro, especially Anso.
 
Methodology
In the current research, using ECMWF precipitation network data version ERA5 with a spatial resolution of 0.25*0.25 degrees of arc and a daily time resolution, it was tried to determine the trend of annual changes and precipitation cycles during the statistical period of 1963-2022, as a manifestation and index of climate changes and also as one of the essential research fields about Iran's rainfall should be exposed to attention. Thus, by applying the methods of analysis of trends and cycles, precipitation events in Iran were studied. In order to analyze the findings, firstly, the average and coefficient of annual changes in precipitation were analyzed, and then the role of spatial factors and their impact on precipitation were analyzed using correlation relationships. In the next step, by fitting the linear regression model to the parametric method, the annual precipitation trend was investigated. Finally, the characteristics of Iran's precipitation were investigated using analogs.
 
Results and Discussion
In the analysis of the average and coefficient of changes of precipitation during the statistical period, the highest average annual precipitation is related to the edge of the Caspian Sea, the heights of Zagros and parts of the northwest of the country, and the highest amount of the coefficient of variation corresponds to the south and southeast regions of the country. Also, the lowest coefficient of variation is related to the northern and northwestern regions of the country. The average maximum rainfall in the northern coastal strip and the parts related to the northwest of the country is related to the west and southwest of the country, which corresponds to the areas with the highest atmospheric precipitation; the investigation of the behavior of precipitation in the long term (trend) indicated that about 69% of the country has a negative annual trend and is associated with a decrease of -0.6 mm of precipitation per year, and approximately 30% of the country's area experiences a 0.2 mm per year increase in positive rainfall. The results of the analysis of cycles, which were not evident in other studies, indicated the existence of 30 coefficients for the 60 years of the studied statistical period, and each pixel of the precipitation map was identified and displayed in separate maps.
The first covariant was analyzed in comparison with the annual precipitation trend because the return period is equal to the length of the statistical period and corresponds to the trend. Based on the other results obtained, the homogenizers were divided into five different groups. The related maps were grouped and analyzed based on cycles, the impact of atmospheric systems, topographical conditions, the impact and role of water zones and geographical location. The second group of consonants decreases from the south to the north of the country and from the west to the east of the areas associated with these consonants. This homogenizer indicates the existence of ten cycles of about 2 to 30 years.  This group likely has a long-term cycle (30 years) that includes short-term cycles (2-9). According to the geographical location of these fluctuations, they may be affected by the country's coastal strips. Therefore, these rainfall cycles can be attributed to these regions' heavy and heavy rains.
The spatial distribution of the significant homogenizers of the third group includes the regions corresponding to the eastern half of the country, which decreases from the northeast to the southwest. With this description, sometimes heterogeneous nuclei disrupt this uniformity. Based on the 12-year cycle, the significance of precipitation fluctuations in the covered areas can be attributed to sunspots. According to the 12-year cycle, the significance of precipitation fluctuations in the covered areas can be attributed to sunspots. According to Lashkari (2000), the cycles belonging to homosaz 16, 20 and 21 can be attributed to the expansion of the high-pressure center in Siberia and its tongues and the location of the pressure centers in Sudan, which leads to the activation of low-pressure systems spread over Iran.
The spatial distribution of precipitation fluctuations for the fourth group coefficients indicates the presence of the largest range in the western and southwestern regions. Although sometimes parts of the country's east, northeast, and southeast are affected by the significant fluctuations of these coefficients in a scattered manner, generally, the role of these fluctuations in these regions is more than that of other regions.
 
Conclusion
Finally, the maps related to different groups show the weak role of the significant homogenizers in the northern coastal strip and the country's central regions. However, the study area's south, southeast, east, and southwest areas are mainly affected by 2-7 year cycles. Precipitation patterns related to these co-factors can be attributed to the influence of local factors and processes, nearby water zones, and atmospheric circulation elements (simultaneous systems) and are generally dominated by the connection patterns from Doro, especially Anso (according to the return period of significant co-factors). Also, the western areas are dominated by long-term cycles of 7-20 years, so according to the existing cycles, the changes in these areas can be attributed to the impact of precipitation events and solar flares.
 
Funding
 There is no funding support.
 
Authors’ Contribution
 All of the authors approved thecontent of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
Here, the authors would like to express their gratitude to the developers of the MATLAB program as well as the European Center for Medium-Range Weather Forecasts (ECMWF) version (ERA5).

کلیدواژه‌ها [English]

  • Precipitation
  • Trend
  • Regression
  • Harmonic
  • Cycle
  1. اسبقی، قربان؛ جغتایی، محمد و  محب الحجه، علیرضا. (1394). بررسی اثرات نوسان شبه دوسالان (QBO) بر وردسپهر برون حاره ای در اوایل زمستان از دیدگاه انرژی. پژوهش‌های اقلیم‌شناسی، 16(23)، 31-36 .
  2. اسدی، اشرف و اکبری ازیرانی، طیبه. (1399)، تحلیل تغییرات شروع و خاتمه بارش‌های جنوب غرب ایران با استفاده از مدل‌های روند، فصلنامه توسعه پایداری محیط جغرافیا، 3(4)، 107-99.  http://dex.doi.org/1052547/sdge.3.4.99
  3. بیات، علی؛ سلیقه، محمد و اکبری، مهری. (1396). اقلیم‌شناسی سیکلون‌های باران‌زای زمستانه ایران. نشریه تحلیل فضایی مخاطرات محیطی، 2(4)، 18-1.
  4. جلالی، مسعود؛ دوستکامیان، مهدی و شیری کریم وندی، امین. (1398). بررسی و تحلیل همدیدی دینامیک سازو کارهای بارش فراگیر و زمستانه ایران. تحقیقات کاربردی علوم جغرافیایی، 19 (55)، 55-37.  ‌doi: 10.29252/jgs.19.55.37
  5. جهانبخش اصل، سعید؛ محمدی، غلامحسن؛ خجسته غلامی، وحید و آزاده قرباغ، اسما. (1398)، اثرات نوسانات شبه دوسالانه بر بارش‌های زمستانه ایران. پژوهش‌های جغرافیای طبیعی،1 (52)، 127-113. doi:10.22059/jphgr.2020.287400.1007433
  6. جهانبخش، سعید و عدالت دوست، معصومه. (1387)، تغییر اقلیم در ایران مطالعه موردی شاخص نوسانات اطلس شمالی به‌عنوان شاخصی از تأثیرات فعالیت خورشیدی بر تغییرات بارش آذربایجان. سومین کنفرانس مدیریت منابع آب ایران. دانشگاه تبریز.
  7. حسینی، سید محمدحسین؛ مسعودیان، سید ابوالفضل و موحدی، سعید. (1394). بررسی هم‌زمانی پرفشار دریای سیاه و رخداد بارش روزانه در ایران‌زمین. فصلنامه تحقیقات جغرافیایی، 30 (1)، 1-16.
  8. حیدری، سوسن؛ کریمی احمدآبادی، مصطفی و بیرانوند، آذر. (1402). ارزیابی عملکرد داده‌های بازتحلیل ERA5 در تخمین بارش ایران و واکاوی فضایی رژیم بارشی کشور. پژوهش‌های دانش زمین، 15 (2)، 1-25.
  9. درخشنده، علی؛ خورانی؛ اسدالله و رضازاده، مریم. (1402). روندیابی بارش در ایران بر اساس داده‌های MERRA2. فیزیک زمین و فضا، 49 (3)، 683-669.
  10. رزمی، رباب. (1401). تبیین برخی فرایندهای جوی (بارش و تبخیر) و کاربری اراضی بر میزان آبدهی حوضه آبریز کارون بزرگ. رساله دکتری، دانشکده علوم انسانی، گروه جغرافیا، دانشگاه زنجان
  11. رسولی، علی‌اکبر؛ باباییان، ایمان؛ قائمی، هوشنگ و زواررضا، پیمان. (1390)، ارتباط بین بارش فصلی ایران و دمای پهنه آبی منطقه‌ای. پژوهش‌های اقلیم‌شناسی، 2(5)، 69- 92. رئیس پور، کوهزاد و عساکره، حسین. (1401)، بررسی نقش تعامل الگوهای توأم کم‌فشار بریده‌شده و رودباد جبهه قطبی در رخداد بارش سنگین فروردین‌ماه 1398 در استان لرستان،. جغرافیا و مخاطرات محیطی، 11 (3)، 225- 249
  12. عساکره، حسین؛ مسعودیان، سید ابوالفضل و ترکارانی، فاطمه. (1400)، تغییرپذیری نقش عوامل مکانی مؤثر بر بارش در ارتباط با تحولات دهه‌ای بارش سالانه ایران‌زمین. جغرافیا و برنامه‌ریزی محیطی، 3 (32)، 146-129
  13. عساکره، حسین و رزمی، رباب. (1390)، اقلیم‌شناسی بارش شمال غرب ایران،. جغرافیا و توسعه، 19 (25)، 157-137. doi: 10.22111/gdij.2011.514
  14. عساکره، حسین و رزمی، رباب. (1391)، تحلیل تغییرات بارش سالانه شمال غرب ایران. جغرافیا و برنامه‌ریزی محیطی، 23 (3)، 162-147.
  15. عساکره، حسین. (1400)، مبانی اقلیم‌شناسی آماری. انتشارات دانشگاه زنجان.
  16. عساکره، حسین. (1388). تحلیل طیفی سری‌های زمانی دمای سالانه تبریز. فصلنامه تحقیقات جغرافیایی، 24(3)، 50-33.
  17. عساکره، حسین. (1386)، تغییرات زمانی و مکانی بارش ایران طی دهه‌های اخیر. جغرافیا و توسعه، 5 (10)، 145-164.
  18. عساکره، حسین؛ مسعودیان، سید ابوالفضل و ترکارانی، فاطمه. (1400)، تفکیک نقش عوامل درونی و بیرونی در وردایی دهه‌ای بارش سالانۀ ایران‌زمین طی چهار دهۀ اخیر (1394-1355). پژوهش‌های جغرافیا طبیعی، 53(1)، 107-91. doi: 10.22059/jphgr.2021.304776.1007529
  19. عساکره، حسین. (1386). تغییرات زمانی مکانی بارش ایران طی دهه‌های اخیر. جغرافیا و توسعه، 10 (5)، 145-164 doi:  10.22111/gdij.2007.3669
  20. عساکره؛ حسین و دوستکامیان، مهدی. (1393)، بررسی نقش عوامل مکانی بر توزیع -پراکندگی بیشینه‌های آب قابل بارش جو ایران. تحقیقات کاربردی علوم جغرافیایی، 15(36)، 24-39.
  21. عساکره، حسین.؛ مسعودیان؛ سید ابوالفضل و ترکارانی؛ فاطمه. (1399)، آشکارسازی روند بلندمدت بارش سالانه ایران‌زمین در ارتباط با تغییر فراوانی فرین‌های بارش روزانه. جغرافیا و مخاطرات محیطی، 9 (36)123،-143 doi:  10.22067/geoeh.2021.67028.0
  22. علیجانی، بهلول. (1385). اقلیم‌شناسی سینوپتیک. چاپ دوم، تهران: انتشارات سمت.
  23. غیور، حسنعلی و عساکره، حسین.  (1384)، کاربرد مدل‌های فوریه در برآورد دمای ماهانه و آینده‌نگری آن، مطالعه موردی: دمای مشهد. تحقیقات جغرافیایی، 78 (1) ، 83-99
  24. غیور، حسنعلی و مسعودیان، سید ابوالفضل. (1375). بررسی نظام تغییرات مجموع بارش سالانه در ایران‌زمین. نشریه نیوار، 15 (29)،27-60 .
  25. فاروقی، آیدا. (2015)، تحلیل همدید بارش سنگین شمال شرق ایران (مطالعه موردی 11 و 12 فروردین 1393). ششمین کنفرانس بین‌المللی مدیریت جامع بحران.
  26. فاطمی، مهران؛ امیدوار، کمال؛ نارنگی فرد، مهدی و حاتمی بهمن بیگلو، خداکرم. (1394)، شناخت الگوهای همدید مؤثر بر دوره‌های ترسالی و خشک‌سالی در ایران مرکزی. فصلنامه جغرافیای طبیعی، (29)8، 40-19
  27. قاسمیه، هدی؛ بذرافشان، ام البنین و بخشایش منش، کبری. (1396)، پیش‌بینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکه عصبی مصنوعی در حوزه فلات مرکزی ایران. فیزیک زمین و فضا، 43(2)، 405-418Doi: 10.22059/jesphys.2017.58913
  28. قلی پور، جمیله؛ موسوی بایگی؛ سید محمد؛ زرین؛ آذر و جباری نوقایی، مهدی. (1396) بررسی روند رخدادهای حدی بارش در استان خراسان رضوی (2017-1987). دومین کنفرانس ملی آب و هواشناسی ایران، دانشگاه فردوسی مشهد.
  29. کیانی، مهرداد؛ لشکری، حسن و قائمی، هوشنگ. (1398)، واکاوی اثر رشته‌کوه‌های زاگرس بر تغییرات بارش‌های سودانی در غرب ایران. جغرافیا و برنامه‌ریزی محیطی، 30 (3) ، 40-17. Doi: 10.22108/gep.2019.117653.1169
  30. مسعودیان، سید ابوالفضل. (1390). آب‌وهوای ایران. چاپ اول، مشهد: انتشارات شریعه توس.
  31. مسعودیان، سید ابوالفضل. (1388)، نواحی بارشی ایران. مجله جغرافیا و توسعه، 17 (13)، 79-91،
  32. مسعودیان، سید ابوالفضل. (1384). تأثیر انسو بر بارش ایران. مجله جغرافیا و توسعه ناحیه‌ای، 4 (1)، 82-73. Doi:  https://doi.org/10.22067/geography.v3i4.3038
  33. مفیدی، عباس؛ زرّین، آذر و کارخانه، میثم. (1393). بررسی الگوی گردش جوّ در طول دوره‌های خشک و مرطوب در سواحل جنوبی دریای خزر. مجله ژئوفیزیک ایران، 8 (1)، 176-140. Doi: 20.1001.1.20080336.1393.8.1.10.1
  34. منتظری، مجید. (1388). تحلیل زمانی - مکانی بارش‌های فرین روزانه در ایران. جغرافیا و برنامه‌ریزی محیطی اصفهان، 20 (2)، 140-125. Doi: 20.1001.1.20085362.1388.20.2.7.6
  35. ناظری تهرودی، محمد؛ خلیلی، کیوان و احمدی، فرشاد. (1393). تحلیل روند تغییرات ایستگاهی و منطقه‌ای بارش نیم‌قرن اخیر کشور ایران. نشریه آب‌وخاک، 30 (2)، 643-654. Doi: https://doi.org/10.22067/jsw.v30i2.39130
  36. نجفی، محمد سعید واکبری مقدم‌ثانی، سجاد. (1401)، ارزیابی کارایی سه پایگاه داده در برآورد سر زمانی بارش‌های حدی در ایران. پژوهش‌های تغییرات آب و هوایی، 3 (11)، 98-79.  Doi://10.30488/ccr.2022.363075.1096
  37. ورناصری قندعلی، نسرین؛ عساکره، حسین و فرجی، عبدالله. (1400). چشم‌انداز جابه‌جایی فصلهای بارشی در ناحیه خزری. رساله دکتری، در رشته آب و هواشناسی، گرایش تغییرات آب و هوایی، دانشکده علوم انسانی، گروه جغرافیا، دانشگاه زنجان
  38. Avand, M., Janizadeh, S., & Jafari, F. (2020). Evaluating the Efficiency of Machine Learning Models in Preparing Flood Probability Mapping. Degrad Rehabil Nat Land, 1 (1), 19-32. DOI: 20.1001.1.27174425.1399.1.1.4.3. [In Persian] 
  39. Alijani, B. (2006). Synoptic Climatology, 2nd edition, Tehran: Somit Publications. [In Persian]
  40. Alijani, B. (2008). The effect of Zagros Mountains on the spatial distribution of precipitation. Journal of Mountain Sciences, 5, 218-231. DOI:10.1007/s11629-008-0126-8 [In Persian]
  41. Asadi, A., & Akbari, T. (2019). Analysis of changes in the beginning and end of rainfall in the southwest of Iran using trend models. Journal of Environmental Sustainability Development of Geography, 3 (4), 107-99. [In Persian]
  42. Asakereh, H. (2016). Changes in time and place of precipitation in Iran during recent decades. Geography and Development, 10, 145-164. [In Persian]
  43. Asakereh, H. (2021). Basics of Statistical Climatology. Zanjan University Publications. [In Persian]
  44. Asakereh, H., Masoudian, A., & Tarkarani, F. (2021). Variability of the role of spatial factors affecting precipitation in relation to the decadal changes of annual precipitation in Iran. Geography and environmental planning, 32(3), 129-146. [In Persian]
  45. Asakereh, H. (2009). Spectral analysis of the annual temperature time series of Tabriz. Geographical Research Quarterly, 24 (3), 33-50. [In Persian]
  46. Asakereh, H., & Razmi, R. (2013). Precipitation Climatology of Northwest Iran. Geography and Development, 25, 137-158. [In Persian]
  47. Asakereh, H., & Razmi, R. (2011). Analysis of annual precipitation changes in north-west of Iran. Geography and environmental planning, 23 (3), 162-147. [In Persian]
  48. Asakereh, H. (2016). Temporal and spatial changes of Iran's rainfall during recent decades. Geography and Development, 10 (5), 145-164. [In Persian]
  49. Asakereh, H., & Dostkamian, M. (2013). Investigating the role of spatial factors on the distribution-scattering of maximum precipitable water in Iran's atmosphere. Applied research of geographical sciences, 15(36), 7-24. [In Persian]
  50. Asakereh, H., Masoudian, A., & Terkarani, F. (2019). revealing the long-term trend of annual rainfall in Iran in relation to the change in the frequency of daily rainfall. Geography and Environmental Hazards, 36, 121-141. [In Persian]
  51. Asakereh, H., Masoudian, S., & Terkarani, F. (2021). Separation of the role of internal and external factors in the decadal variability of annual rainfall in Iran during the last four decades (1355-1394). Natural Geography Research, 53(11), 91-107. [In Persian]
  52. Asbaghi, Gh., Joghataei, M., & Mohebalhojeh, A. (2016). Impact of the QBO on the North Atlantic and Mediterranean storm tracks. Geophysical Research Letters, 16(23), 1-8. DOI:10.1002/2016GL072056 [In Persian]
  53. Asbagi, G., Jaghatai, M., & Mohib al-Hijjah, A. (2015). Investigating the effects of the quasi-biennial oscillation (QBO) on the extratropical atmosphere in early winter from the perspective of energy. Climatology research, 16(23-24), 31-36. [In Persian]
  54. Azad, S., Vigneshb, T. S., & Narasimha, R. (2009). Periodicities in Indian monsoon rainfall over spectrallyCampins, homogeneous regions. International Journal of Climatology, 30, 2289 – 2298, https://doi.org/10.1002/joc.2045
  55. Bayat, A., Saligeh, M., & Akbari, M. (2016). Climatology of Iran's winter rain-producing cyclones. Journal of Spatial Analysis of Environmental Hazards, 2, 1-18. [In Persian]
  56. Farooqi, A. (2015). Synopsis Analysis of Heavy Rain in Northeast Iran (Case Study 11 and 12 Farvardin 2013). 6th International Comprehensive Crisis Management Conference. [In Persian]
  57. Fatemi, M., Omidvar, K., Narangi Fard, M., & Hatami Bahman Biglou, K. (2014). Recognizing the synoptic patterns affecting drought and drought periods in Central Iran. Natural Geography Quarterly, 8(29), 19-40. [In Persian]
  58. Ghasemieh, H., Bazarafshan, M., & Bakhshaish, M. K. (2016) Forecasting monthly rainfall using remote linkage models and artificial neural network in the Central Plateau Basin of Iran. Earth and Space Physics, 43(2), 405-418. [In Persian]
  59. Ghayor, H., & Asakereh, H. (2014). Application of Fourier models in estimating monthly temperature and its future forecasting, case study: Temperature of Mashhad. Geographical Research, 78, 83-99. [In Persian]
  60. Ghayor, H., & Masoudian, A. (1996). Investigating the system of total annual precipitation changes in Iran, Zemish. Newar Journal, 15(29), 27-60. [In Persian]
  61. Heydari, S., Karimi Ahmadabadi, M., & Biranvand, A. (2023). Evaluation of the performance of ERA5 reanalysis data in Iran's rainfall estimation and spatial analysis of the country's rainfall regime. Earth Science Research, articles ready for publication. [In Persian]
  62. Hiremath, K.M., & Mandi, P.I. (2004). Influence of the solar activity on the Indian Monsoon rainfall. New Astronomy, 9, 651–662 https://doi.org/10.1016/j.newast.2004.04.001
  63. Hosseini, M., Masoudian, A., & Mohadi, S. (2014). Investigating the simultaneity of the high pressure of the Black Sea and the occurrence of daily rainfall in Iran-Zamin. Geographical Research Quarterly, 116, 1-16. [In Persian].
  64. Jansa, J. A., & Genoves, A. (2006). Heavy rain and strong wind events and cyclones in theBalearics, Advances in Geosciences, 7, 73–77 DOI:10.5194/adgeo-7-73-2006
  65. Jahanbakhsh, S., & Adaladoost, M. (2007). Climate change in Iran, a case study of the North Atlantic Fluctuation Index as an indicator of the effects of solar activity on precipitation changes in Azerbaijan. 3rd Iran Water, Resources Management Conference. University of Tabriz. [In Persian]
  66. Jahanbakhsh, S., Mohammadi, G., Khojaste, Gholami V., & Azadeh Garbagh, A. (2018). the effects of quasi-biennial fluctuations on Iran's winter rainfall. Natural Geography Research, 52(1), 113-127. [In Persian]
  67. Jalali, M., Dostkamian, M., & Shiri Karim Vandi, A. (2018). review and synoptic analysis of the dynamics of widespread and winter precipitation mechanisms in Iran. applied research of geographical sciences, 19(55), 37-55. [In Persian]
  68. Jung, I.W., Bae, D.H., & Kim, G. (2011). Recent trends of mean and extreme precipitation in Korea. International journal of climatology, 31, 359-370. DOI:10.1002/joc.2068
  69. Kalaygi Serdar, M., Cagatay, K., & Ercan, K. (2004). Analysis of EL NINO signals on Turkish streamflow and precipitation pattern using spectral analydsis. Fresenius Environmental Bulletin, 13(8), F.719-725,
  70. Kayani, M., Lashkari, H., & Ghaemi, H. (2018), Analysis of the effect of the Zagros mountain range on the changes of Sudanese rainfall in western Iran. Geography and Environmental Planning, 30(3), 17-40. [In Persian]
  71. Mahajan, S., North, GR., Saravanan, Rand Genton MG. (2012). Statistical significance of trends in monthly heavy precipitation over the US. Climate dynamics, 38, 1375-87 Doi: 10.1007/s00382- 011-1091-4
  72. Masoudian, A. (2011). Weather of Iran. first edition, Mashhad: Sharia Tos Publishing House. [In Persian]
  73. Masoudian, A. (2008). Rainy regions of Iran. Journal of Geography and Development, 13, 79-91. [In Persian]
  74. Masoudian, A. (2004). Anso's effect on Iran's rainfall. Journal of Geography and Regional Development, 4, 73-82. [In Persian]
  75. Montazeri, M. (2008). Temporal-spatial analysis of daily freezing rains in Iran, Geography and Environmental Planning. Isfahan. Tabestan, 20(2), 125-140. [In Persian]
  76. Mufidi, A., Zarrein, A., & Karkaneh, M. (2013). Investigating the atmospheric circulation pattern during dry and wet periods in the southern coasts of the Caspian Sea. Iran Geophysics Journal. 8(1), 176-140. [In Persian]
  77. Najafi, M. S., & Moghadam, T. (2022). Evaluating the effectiveness of three databases in estimating the time limit of rainfall in Iran. Climate change research, 3 (11), 98-79 DOI: 10.30488/ccr.2022.363075.1096. [In Persian]
  78. Qolipour, J., Mousavi Baygi, M., Jabari, A., & Nougai, M. (2016). investigation of the trend of extreme precipitation events in Razavi Khorasan province (1987-2017). the second national hydrometeorological conference of Iran, Ferdowsi University of Mashhad, 2017-2018. [In Persian]
  79. Raispour, K., & Asakereh, H. (2022). investigating the role of interaction of low pressure and polar frontal current patterns in the event of heavy rainfall in April 2018 in Lorestan province. Geography and Environmental Hazards, 43, 225-249. [In Persian]
  80. Rasouli, A., Babaiyan, I., Ghaemi, H., & Zavarreza, P. (2013). the relationship between Iran's seasonal rainfall and the temperature of the regional water zone. Climatology Research, 58, 57-72. [In Persian]
  81. Romem, M., Ziv, B., & Saaroni, H. (2007). Scenarios in the development of Mediterranean cyclones, Adv. Geosci., 12, 59-65
  82. Sahsamanoglou, H. S., Makrogiannis, T. J., & Kallimopoulos, P. P. (1991). Some aspects of the basic characteristics of the Siberian anticyclone. International Journal of Climatology 11(8), 827.  DOI:10.5194/adgeo-12-59-2007
  83. Shining, A., Khorani, A., & Rezazadeh, M. (2023). Precipitation trends in Iran based on MERRA2 data. Earth and Space Physics, 49(3), 669-683. [In Persian]
  84. Tahrodi Nazari, M., Khalili, K., & Ahmadi, F. (2013), Analysis of station and regional changes in rainfall in the last half century in Iran. Water and Soil Journal, 30(2), 643-654. [In Persian]
  85. Tarawneh, Q., & Kadioglu, M. (2003). An analysis of precipitation Climatology in Jordan. Theor. Appl.Climatol, 74, 123-136. DOI:10.1007/s00704-002-0705-5
  86. Tegart, W. J., Mc, G., Sheldon, G. W., & Griffths, D. C. (eds.) (1990). Climate Change: The IPPC Scientific Assessment. Australian Government Publishing Service, Canberra
  87. Vernasri Khandali, N., Asakereh, H., & Farji, A. (2021) the perspective of shifting of rainy seasons in the Caspian region, doctoral dissertation, in the field of hydrology and climate change. Faculty of Human Sciences, Department of Geography, Zanjan University. [In Persian]
  88. Xoplaki, E., Gonzalez-Rouco, J.F., Luterbacher, JU and Wanner H. (2004). Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate dynamics, 23, 63-7. DOI:10.1007/s00382-004-0422-0
  89. YoungIn, W., & Jang, M. (2013). Intensity of climate variability derived from the satellite and MERRA reanalysis temperatures: AO, ENSO, QBO. Journal of Atmospheric and Solar-Terrestrial physics, 15-27, https://doi.org/10.1016/j.jastp.2013.01.002