Simulation of Runoff and Sediment Yield in Haraz River Basin in Mazandaran Using SWAT Model

Document Type : Full length article

Authors

1 Associate Professor of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 PhD Candidate, Watershed Management, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

3 Assistant Professor of Natural Resources, University of Gonbad Kavous, Iran

4 Associate Professor of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Introduction
Simulations of river flow and understanding different components of hydrologic cycle are important for programming of the conservation aspects of water resources. Since the study area is located in the site of dam construction, the estimation of rainfall runoff and sediment yield are very important for better management of water resources. Therefore, in this study, the SWAT model was applied. SWAT model is one of the multipurpose simulation models for management of watershed. The main objective of hydrologic models is simulation and prediction of the behavior of the catchment basin. Hydrologic models can simulate land surface hydrological processes to improve water resources management. Today, GIS tools are commonly used in natural resource management; especially in watersheds with several banks. They have linked information such as digital maps. GIS is designed and developed to predict the results of spatial management activities. For situation awareness systems, we need to add the elements of system dynamics. SWAT model is an advanced communication window possible to combine a set of models and GIS data in groundwater and surface water flows and floods.
 
Materials and Methods
The study area of this research is located between 539,022 to 622,236 Eastern longitude and 3,923,033 to 4,009,208 north latitude in zone 39 of UTM. Haraz watershed with an area of 401927.2 hectares is located to the south of the province and in the vicinity of Amol City. The minimum height of 300 meters and a maximum height of 5600 meters are the elevation limits. Calculation of runoff in SWAT model can be simulated in two ways: Green Ampt and SCS curve.
SWAT model to simulate the hydrological cycle on the water balance equation is as:
 
Prediction of the rate of soil erosion caused by rainfall and runoff in SWAT model is based on equation MUSLE. In this method, surface runoff is used as an agent of erosion. Sediment transport lag in the effect of snow cover on erosion, sediment and lateral flow of groundwater is also calculated.
In order to improve the quality of model calibration and uncertainty analysis in SWAT-CAP software sufi2 method was used. SUFI2 program combines calibration uncertainty and tries to determine parameter uncertainty, so that most of the observed data in the region of uncertainty can be determined.
 
Results and Discussion
Using ARC- SWAT software watershed study area was divided into 25 sub basins. Because of the diversity of land use map and soil the sub basins were divided into 91 hydrologic units (HRU). In the following calibration and validation, during the first stage 20 variables were selected and the initial values are based on a list prepared by the guide table of SWAT, the application entered SWAT CUP. After 600 iterations, each algorithm of SUFI2 determined 8 parameters for simulation of runoff and sediment load parameter 5 as sensitive agents. Then, the model was calibrated to simulate runoff for years of 1995-2004, and evaluated using correlation coefficient (R2), coefficient of Nash – Sutcliffe (NS) and Mean of Squared Error (MSE). The results showed that the values of the coefficients R2, NS, and MSE in the Karehsang station are 0.80, 0.77, and 20.93, in Chelav Station are 0.75, 0.73, and 1.23; in Razan Station is 0.79, 0.75, and 5.91 and in Panjab station are 0.68, 0.55, and 2.70, respectively. Sediment yield was also calibrated in Karehsang station for the years of 2002-2006 and the statistical coefficients of (R2) and NS were obtained 61 and 60 percent, respectively. To perform validation, the model was run for years of 2005-2009. The results showed that the coefficients of R2, NS, and MSE are 0.87, 0.75, and 10.17 for Karehsang station; 0.83, 0.77, 0.21 for Chelav station; 0.81, 0.72, 1.34 for Razan station, and 0.75, 0.70, 0.67 for Panjab stations, respectively. Validation of sediment yield was done for the years of 2007-2008 with coefficients of NS and R2 equal to 53 and 68 percent.
 
Conclusion
The primary objective of this study was to evaluate the performance of SWAT model to simulate runoff and sediment yield of Haraz watershed gauging stations within the basin. In the sensitivity analysis, the various parameters for runoff curve number (CN), Soil Density (SOL-BD) and hydraulic conductivity effects (CH-K2) are of high sensitivity. The high sensitivity of the CN parameter is investigated in the domain of the role of environmental factors and land use in runoff areas. The results of the study are consistent with the results of the studies of Panagopoulos and colleagues (2011) and Parajuli et al. (2013). To predict sediment parameters for the simulation of sediment load, SPCON, SPEXP and SOL_AWC are more sensitive to be considered.
According to the figures, the values of peak runoff and soil loss estimates are close to the observed values. Finally, the results indicated that the model has a high level of performance in simulation flow discharge and sediment yield simulation, and it can be used for operating watershed management strategies.

Keywords

Main Subjects


  1. ابراهیمی، ح. (1390). «ارزیابی کارایی مدل SWAT در شبیه‌سازی دبی رواناب و بار رسوب حوضة آبخیز رودخانة دویرج در استان ایلام». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی نصرالله بصیرانی. زابل: دانشگاه زابل. گروه مرتع و آبخیزداری.
  2. اخوان، س.، عابدی، ج.، موسوی، ف. و عباسپور، ک. (1389). «تخمین "آب آبی" و "آب سبز" با استفاده از مدل SWAT در حوضة آبریز همدان- بهار». علوم و فنون کشاورزی و منابع طبیعی. س 14. ش 53. ص. 3-9.
  3. بهرامی، م. (1390). «ارزیابی عملکرد مدل SWAT در پیش‌بینی رواناب، حوضة آبخیز کیچیک استان مازندران». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی عطاءالله کاویان. ساری: دانشگاه علوم کشاورزی و منابع طبیعی ساری. گروه آبخیزداری.
  4. سادات میرصانع، ز.، کاویانپور، م. و دلاور، م. (1388). «ارزیابی پارامترهای مختلف هیدرولوژیکی بر رواناب حوضه‌های آبریز به‌وسیلة مدل SWAT». هشتمین کنگرة بین‌المللی. مهندسی عمران. شیراز: دانشگاه شیراز.
  5. سلمانی، ح. (1390). «بهینه‌سازی پارامترهای موثر در بارش- رواناب در مدل نیمه‌توزیعی SWAT (مطالعة موردی زیرحوضة قزاقلی حوضة گرگان‌رود استان گلستان)». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی محسن محسنی ساروی. تهران: دانشگاه تهران. گروه آبخیزداری.
  6. عطفی، ع.ر. (1393). «شبیه‌سازی بیلان آب و رسوب حوضة آبخیز اهرچای با استفاده از مدل SWAT و ArcGIS». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی مجید رئوف. اردبیل: دانشگاه محقق اردبیلی. گروه مرتع و آبخیزداری.
  7. گلشن، م.، کاویان، ع.، روحانی، ح. و اسمعلی عوری، ا. (1393). «مدل‌سازی هیدرولوژیکی حوضة آبخیز چلاو با استفاده از مدل ArcSWAT». دهمین همایش ملی علوم و مهندسی آبخیزداری. مهندسی منابع طبیعی. بیرجند: دانشگاه بیرجند.
  8. ناصر‌آبادی، ف. (1390). «کاربرد مدل SWAT در تخمین رواناب و رسوب ماهانه در حوضة آبخیز قره‌سو اردبیل». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی اباذر اسمعلی عوری. اردبیل: دانشگاه محقق اردبیلی. گروه مرتع و آبخیزداری.
  9. نامدار، م. (1393). «پیش‌بینی رواناب سطحی بر پایة تغییرات اقلیمی حوضة آبخیز هراز». پایان‌نامة کارشناسی‌ارشد. به‌راهنمایی عطاءالله کاویان. ساری: دانشگاه علوم کشاورزی و منابع طبیعی ساری. گروه آبخیزداری.
    1. Abbas-pour, K.C. (2009). User manual for SWAT-CUP2, SWIS Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland. pp. 95.
    2. Abrahimi , H. (2012). "Performance Evaluation of SWAT Model to Simulation of Runoff and Sediment Yield in Doiraj River Basin in Ilam Province". Master's Dissertation. Zabol: University of Zabol. Department of Range and Watershed. (In Persian).
    3. Akhavan, S., Abedi, J., Mousavi, F. and Abbaspour, K. (2010). "Estimate "blue water" and "green water" Whit using SWAT Model in Hamedan– Bahar Watershed". Sciences and Technology of Agriculture and Natural Resources. Vol. 14. No. 53. pp. 9-23. (In Persian).
    4. Al-Ansari, N., Ezz-Aldeen, M. and Knutsson, S. (2013). "Application of swat model to estimate the sediment load from the left bank of Mosul Dam". Advanced Science and Engineering Research. Vol. 3. pp. 47-61.
    5. Atfi, Gh. (2014). "Flow and sediment yield prediction using SWAT model and ArcGIS in Ahar- chai". Master's Dissertation. Ardabil: University of Mohaghegh Ardabili. Department of Watershed. (In Persian).
    6. Bahrami, M. (2012). "Performance evaluation SWAT model in runoff simulation, KICHIK Watershed in Mazandaran Province". Master's Dissertation. Sari: University of Sciences Agriculture and Natural Resource. Department of Watershed. (In Persian).
    7. Bathurst, J.C. (2002). "Physically-based erosion and sediment yield modelling: the SHETRAN concept. In: Wolfgang Summer and Desmond E. Walling (ed.), Modelling erosion, sediment transport and sediment yield". IHP-VI Technical Documents in Hydrology. No. 60. pp. 47-68.
    8. Binaman J. and Shoemaker, C.A. (2005). "an analysis of high-flow sediment event data for evaluating model performance". Hydrological Processes. Vol. 19. pp. 605-620.
    9. Chantha, O., Sabine, S. and Jose-Miguel, S. (2011). "Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model". Hydrology. Vol. 401. pp. 145-153.
    10. Du, J., Xie, S., Xu, Y., Xu, C. and Singh, V.P. (2007). "Development and testing of a simple physically-based distributed rainfall-runoff model for storm runoff simulation in humid forested basins". Hydrology. Vol. 336. No. 3-4. pp. 334-346.
    11. Duan, Z., Song, X. and Liu, J. (2009). "Application of SWAT for sediment yield estimation in a mountainous agricultural basin". graduate university of Chinese academy of sciences (GUCAS). Conservation Sendy.
    12. Gassman, P.W., Reyes, M., Green, C.H. and Arnold, J.G. (2007). the soil and water assessment tool: historical development, applications, and future directions". Transactions of the ASABE. Vol. 50. No. 4. pp. 1212-1250.
    13. Gebremicael, T.G., Mohamed, Y.A., Betrie, G.D., van der Zaag, P. and Teferi, E. (2013). "Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests. physically- based models and land use maps". Hydrology. Vol. 482. pp. 57-68.
    14.  Golshan, M., Kavian; A., Rouhani, H. and Esmali- Ouri, A. (2015). "Hydrological Catchment Modeling Using SWAT Model". National Conference on Watershed Management Science and Engineering. Birjand: Agronomy. University of Birjand. (In Persian).
    15. Kliment, Z., Kadlec, j. and Langhammer, J. (2008). "Evaluation of suspended load changes using AnnAGNPS and SWAT semi – empirical erosion models". Catena. Vol. 73. pp. 286-299.
    16. Lou, Y., Su, B., Yuan, J., Li, H. and Zhang, Q. (2011). "GIS Techniques for Watershed Delineation of SWAT Model in Plain Polders". Precedia Environmental Science. Vol. 10. pp. 2050-2057.
    17. Namdar, M. (2014). "Surface Runoff Prediction based onClimate Change in Haraz Watershed". Master's Dissertation. Sari: University of Sciences Agriculture and Natural Resource Sari. Department of Watershed. (In Persian).
    18. Naser-abadi, F. (1390). "Flow and sediment yield prediction using SWAT model in Garaso watershed, Ardabil Province". Master's Dissertation. Ardabil: University of Mohaghegh Ardabil. Department of Range and Watershed. (In Persian).
    19. Ndomba, P.M., Mtalo, F.W. and Killingtveit, A. (2008). "A Guided SWAT Model Application on Sediment Yield Modeling in Pangani River Basin: Lessons Learnt". Urban Environmental Engineering. Vol. 2. No. 2. pp. 53-62.
    20. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W. (2005). Soil and Water Assessment Tool- Theoretical Documentation– version 2005. Texas. Agricultural Research Service. P. 494.
    21. Panagopoulos, Y., Makropoulos, C., Baltas, E. and Mimikou, M. (2011). "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations". Ecological modeling. Vol. 222. pp. 3500-3512.
    22. Parajuli, P., Jayakody, P., Sassenrath, G., Ouyang, Y. and Pote, J. (2013). "Assessing the impacts of crop-rotation and tillage on crop yields and sediment yield using a modeling approach". Agricultural Water Management. Vol. 119. pp. 32-42.
    23. Pisinaras, V., Petalas, C., Gikas, G. D., Gemitzi, A. and Tsihrintzis, V.A. (2010)."Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT)". Desalination. Vol. 250. No. 1. pp. 274–286.
    24. Popescu, L., Abdelhami, M., Ndomba, P., Beevers, L. and Betrie, G. (2013). "Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania". Physics and Chemistry of the Earth. Vol. A/B/C. No. 61-62. pp. 12-21.
    25. Sadat-Mirsane, Z., Kavyan-poor, M. and Delavar, M. (2009). "Assess the impact of various parameters on runoff Hydrological catchment basins by SWAT Model". Eighth international Congress on Civil Engineering. pp. 1-8.(In Persian).
    26. Salmani, H. (2011). "Optimization of the parameters affecting the rain fall-run off in SWAT semi distributive model (case study of Ghazaghli subwatershed. (Gorganrood waterhed)". Master's Dissertation. Tehran:. University of Tehran. Department of Watershed. (In Persian).
    27. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A. and Hauck, L. (2001). "Validation of the SWAT model on a large river basin with point and nonpoint sources". The American Water Resources Association. Vol. 37. No. 5. pp. 1169-1188.
    28. Shimelis, G.S., Dargahi, B., Srinivasan, R. and Melesse, A. (2010). "Modeling of Sediment Yield from Anjeni-Gauged Watershed, ETHIOPIA Using SWAT Model".The American Water Resources Association. Vol. 46. No. 3. pp. 514-526.
    29. SHirivastava, R.K., Tripathi, M.P. and Das, S.N., (2004). "Hydrological modeling of a small watershed using satellite date and GIS technique". Journal of the Indian Society of Remote Sensing Vol. 32. No. 2. pp. 145-157.
    30. Silva, R.M., Santos, C.A.G. and Silva, L.P. (2007). "Evaluation of soil loss in Guaraira basin by GIS and remote sensing based model". Urban Environmental Engineering. Vol. 1. No. 2. pp. 44-52.
    31. Sommerlot, A., Nejad-hashemi, A., Woznicki, S., Giri, S. and Prohaska, M. (2013). "Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale". Environmental Management. Vol. 127. pp. 227-236.
    32. Tang, F.F., Xu, H.S. and Xu, Z.X. (2012). "Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting". Procardia Environmental Science. Vol. 13. pp. 1760-1770.
    33. van-Griensven, A., Popescu, I., Abdelhamid, M.R., Ndomba, P. and Beevers, L. (2013). "Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania". Physics and Chemistry of the Earth. Vol. 61–62. pp. 12–21.