Exploration of the Potential Copper Areas in Khoy City, Ghezel Dash, Using Hyperion Images

Document Type : Full length article

Authors

1 MA in Remote Sensing and Geographic Information Systems (GIS), University of Tabriz, Tabriz, Iran

2 Assistance Professor of Geomorphology, Department of Geomorphology, Faculty of Literature and Humanities, Urmia University, Urmia, Iran

3 Assistance Professor of Climatology, Department of Climatology, Faculty of Literature and Humanities, Mohaghegh Ardabili University, Ardabil, Iran

4 MA Student in Remote Sensing and Geographic Information Systems (GIS), Kharazmi University, Tehran, Iran

Abstract

Introduction
In recent decades, a large variety of science experts, including geology and mine scientists, have considered remote sensing technology as one of the most important instruments to receive information. Access to hyper spectral data is one of the main evolutions in the remote sensing technology. The main feature of the technology is its application in identification of minerals and detection of the minerals. Existing narrow and spectral bands of hyper spectral images provide the possible for geologic and mineralogy examination of an area. Paying attention to existing maps of the mineral distribution has been provided by classic method. Therefore, new sensor such as Hyperion has provided new capabilities in planning of biophysical and biochemistry features.
 
Materials and Methods
Ghezel Dash area is located in longitudes 44° 28´ – 44° 41´ and latitude 38° 43´ – 39° 06´ that is in 68 Km of Khoy City, Northwestern part of West Azerbaijan. The Satellite image employed in this research is Hyperion sensor of EO-1 satellite with 242 spectral bands. Satellite images of Landsat 7, ETM sensor, band 8 has also been used for geometric correction of the Hyperion sensor images. In this research, after necessary preprocessing including geometric and radiometric corrections on Hyperion images was performed, we used SAM and Spectral Information Divergence (SID) Algorithms for detection of minerals. Spectral angular mapper (SAM) is an automated method of algebraic that calculates similarity of the spectra between the spectrum of a pixel and the reference spectrum. The similarity between the two spectra is expressed as their mean angle. The SID is a probabilistic method that calculates spectral similarity between two pixel vectors based on the difference in the probability distribution obtained from their spectral signatures. The smaller the divergence,the more is the probability of similarity of pixels.
 
Results and Discussion
In this research Spectral Library of United States Geological Survey (USGS) was used for matching of unknown spectrum. Then, resample was performed by hyper spectral data of Hyperion with 142 bands. Minerals map was detected after running the algorithms of SAM and SID by spectral signatures of USGS spectral library andHyperion images spectrato detect minerals. Results of this research indicate that Chalcopyrite, Pyrite and Bornite have the maximum value in both methods, respectively, but their amounts are different in two algorithms. In these maps, secondary minerals such as Malachite and Azurite are very slight. In order to assess the accuracy of these algorithms, the results of these two algorithms were compared with the maps produced in this region. The results indicate that the maps of SAM and SID methods have accuracy of 85 and 76 percent, respectively.
 
Conclusion
Comparison of the maps produced by the algorithms used in this study with available maps indicates that the minerals are present in the study area.  Map of West Azarbaijan province confirmed the effects of industries and mines. The minerals of malachite and azurite were not confirmed in the Geological Organization report. Based on the results of the present study and evaluation of the overall accuracy, Spectral Information Divergence method (SID) can be used as an efficient method in classification  based on exitedminerals for detection of metal mines. The results of this research also is consistent with the results of Amer et al. (2012) that had usedclassification methods of SAM and SID for classification of alteration zones associated with gold.

Keywords

Main Subjects


1. ارغوانیان، آ.، درویش‌زاده. ر.، رسا. ا. و حسینی‌اصل، ا. (1390). «استخراج نواحی دارای پتانسیل طلا در منطقة غرب مشکین‌شهر با استفاده از تصاویر HYPERION». سنجش از دور و GIS ایران. س 3. ش 1. بهار 1390.
2. اکبری. د.، سعادت‌سرشت. م. و همایونی. س. (1388). «بررسی و پیاده‌سازی روش‌های مختلف آشکارسازی طیفی بام‌های دارای پوشش خاص روی تصاویر فراطیفی». همایش ژئوماتیک 88. تهران.
3. بشارتی. س.، ذاکری. ل. و فتاحی. ش. (1390). «بررسی مینرالیزاسیون و ژنز کانسار مس قزل‌داش خوی (استان آذربایجان غربی)». مجموعه مقالات چهاردهمین همایش بلورشناسی و کانی‌شناسی ایران. دانشگاه بیرجند. ص 46-49.
4. بهرام‌بیگی. ب.، رنجبر. ح. و شهاب‌پور. ج. (1391). «مقایسة روش‌های داده‌پایه و طیف‌پایه برای نقشه‌برداری از مناطق دارای کائولینیت در آتشفشان مساحیم با استفاده از داده‌های هایپریون». مجلة زمین‌شناسی اقتصادی. ش 2. ص 199-215.
5. سیدین. س.، ولدان م. و مقصودى. ی. (1393). «اکتشاف تراوشات هیدروکربورى با استفاده از روش‌هاى آشکارسازى هدف در تصاویر فراطیفى». ماهنامة علمى- ترویجى اکتشاف و تولید نفت و گاز. ش 111. ص 63-69
6. علوی‌پناه. س.ک. (1392). کاربرد سنجش از دور در علوم زمین. چ 4. تهران: مؤسسه انتشارات دانشگاه تهران.
7. فاطمی، س.ب. و رضایی، ی. (1391). مبانی سنجش از دور. چ 3. تهران: انتشارات آزاده.
8. کوثری. س. و پارسی. پ. (1373). «بانک اطلاعاتی داده‌های ژئوشیمیایی ورقة 1:100000 خوی». سازمان زمین‌شناسی کشور.
9. مهندسین مشاور کاوشگران (1375). «گزارش طرح اکتشاف نیمه‌تفصیلی مس در منطقة قزل‌داش خوی». سازمان صنایع و معادن آذربایجان غربی.
10. شریفی، ا.ر.(1387). طبقه‌بندی تصاویر ابرطیفی از طریق تجزیه‌وتحلیل امضای طیفی پدیده‌ها، پایان‌نامه کارشناسی ارشد، رشته سنجش از دور و GIS، دانشگاه تهران.
11. Akbari D., Saadat-Seresht, M. and Homayooni, S. (2009). "Investigate and implement methods of detection range with special coating on the roof of hyperspectral images". Geomatics Conference. 2009. Tehran. (In Persian).
12. Aktaruzzaman, A. (2008). "Simulation and Correction of Spectral Smile Effect and its Influence on Hyperspectral Mapping". MS Thesis. International Institute for GeoInformation Science and Earth Observation. Enschede. Netherlands. pp. 86-102.
13. Alavi-panah, S.K. (2012). Application of Remote Senseing in the Earth Sciences (soil). 4th Edition. Tehran: University of Tehran Press. (In Persian).
14. Amer. R, Kusky.T. and Mezayen, A.E (2012). "Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt". Advances in Space Research 49. pp. 121–134.
15. Arghavanian A., Darvish-zadeh R., Rasa, I. and Hossaini-Asl, A. (2011). "Surveying the Potential Auriferous Areas in Western Region of MeshkinShahr, using Hyperion Images". Iranian Remote Sensing & GIS. Vol. 3. No. 1. pp. 91-106. (In Persian).
16. Bahram-Beigi, B., Ranjbar, H.A. and Shahab-Pour, J. (2012). "Comparison of Spectral Base and Pixel Base Methods for Mapping the Kaolinite Areas in Mozahem Volcano with Use of Hyperion Images". Journal of Economic Geology. Vol. 4. No. 2. pp. 199-215. (In Persian).
17. Beiranvand-Pour, A. and Hashim, M. (2011). "The Earth Observing-1 (EO-1) Satellite Data for Geological Mapping, Southeastern Segment of the Central Iranian Volcanic Belt". Iran. International Journal of the Physical Sciences. Vol. 6. No. 33. pp. 7638 -7650.
18. Besharati, S., Zakeri, L. and Fattahi, Sh. (2010). "Rainbow Dash temper copper deposit mineralization and genesis review (West Azarbaijan province)". Proceedings of the Fourteenth Conference Crystallography and Mineralogy of Iran. University of Birjand.pp. 46–49. (In Persian).
19. Chang, C.I. (2003). Hyperspectral Imaging: Techniques for spectral Detection and Classification, Orlando. FL: Kluwer Academic.
20. Du, Y., Chang, C.I. and Ren, H. (2004). "New hyperspectral discrimination measure for spectral characterization". Society of Photo-Optical Instrumentation Engineers.
21. Emami, H. and Afary, A. (2007). "Subpixel Classification on the Hyperspectral Images for Accuracy Improvement of Classification Results". Dep. of Geodesy and Geomatic Eng. K.N.Toosi University of Technology. Tehran.Iran.
22. Fatemi. S.B. and Rezaei.Y. (2010). Principles of Remote Sensing. Tehran: Azadeh publication. (In Persian).
23. Goodenough, D.G., Dyk, A., Niemann, K.O., Pearlman, J.S., Chen, H., Han, T., Murdoch, M. and West, C. (2003). "Processing Hyperion and ALI for Forest Classification". Geoscience and Remote Sensing. IEEE Transactions on. Vol. 41. pp. 1321-1331.
24. Gowen, A.A., O'Donnell, C.P., Cullen, P.J., Downey and Frias, J.M. (2007). "Hyperspectral imaging – an emerging process analytical tool for food quality and safety control". Trendsin Food Science &Technology. No 18. pp. 590-598.
25. Jupp, D.L.B., Datt, B., Lovell, J., Campbell, S., King, E.A., et al. (2002). Discussions around Hyperion Data: Background Notes for the Hyperion Data Users Workshop. CSIRO Earth Observation Centre. Canberra.
26. Kavoshgaran Consulting Engineers (1996). "Report Semidetailed copper exploration project in the khoy city areas Ghezel Dash". Industries and Mines Organization in West Azarbaijan. (In Persian).
27. Kosari, S. and Parsi, P. (1994). "Khoy Database of geochemical data sheet 1:100000". Geological Organization of Iran. (In Persian).  
28. Kurse, F.A., Boardman, J.W. and Huntington, J.F. (2003). "Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping". IEEE transactions on Geoscience and remote sensing. No. 41. pp. 1388-1400.
29. Liu, L., Zhou, J., Yin, F., Feng, M. and Zhang, B. (2014). "The Reconnaissance of Mineral Resources through ASTER Data-Based Image Processing, Interpreting and Ground Inspection in the Jiafushaersu Area, West Junggar, China". Journal of Earth Science. Vol. 25. No. 2. pp. 397–406.
30. Luciano, J. and Accioly, O. (1998)."Using mixture analysis for soil information extraction from an AVIRIS scene at the Walnut Gulch Experimental Watershed – Arizona". Simpósio Brasileiro de Sensoriamento Remoto. Vol. 9. pp. 1335-1344.
31. Meer, V.D., Freek, D. and De Jong, S.M. (2001). Imagins Spectrometry: basic principle and prospective applications. Academic press. Springer Netherlands.
32. Nagedra. H. and Rocchini, D. (2008). "High resolution satellite imagery for tropical bio diversity Studies: the devil is in the detail". Biodiver Conserv. No. 1. pp. 3431–3442
33. Pearlman. J, Carman, S., Segal. C., Jarecke, P. and Barry. P. (2001). Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission. in Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS’01). Sydney. Australia.
34. Perry, D. (2000). "Visual And Near-Infrared Imagery Using NVIS". M.S thesis. NAVAL postgraduate school. California. USA.
35. Sayedin, S., Valadan, M. and Maghsoudi, Y. (2014). "Exploration of hydrocarbon seeps with hyperspectral detection methods aimed Drtsavyr". Science magazine promoting oil and gas exploration and production. No. 111. pp. 63–69. (In Persian).
36. Sharifi, A.R. (2008). "Hyperspectral Image Classification Using Spectral Signature Analysis". Masters of Science Dissertation. University of Tehran. (In Persian).
37. Ungar, .S.G. (2001). Overview of EO-1, the first 120 days. in Proc. Int. Geoscience and Remote Sensing Symp. (IGARSS’01). Sydney. Australia.
38. "USGS spectral library". (http://www.speclab.cr.usgs.gov).
39. Villa, A., Benediktsson, J.A., Chanussot, J. and Jutten, J. (2011). "Hyperspectral Image Classification With Independent Component Discriminant Analysis". IEEE Transactions on Geoscience and Remote Sensing. Vol. 49. No. 12. pp. 4865-4876.
40. Vincent, R.K. (1997). Fundamentals of Geological and Environmental Remote Sensing. Prentice Hall.
41. Wenkai, L. and Qinghua, G . (2014). "A New Accuracy Assessment Method for One- Class Remote Sensing Classification". IEEE Transactions on Geoscience and Remote Sensing. Vol. 52. No. 8. pp. 1- 13.