Land Suitability Assessment in Climate Change Condition, Case Study: Canola Cultivation in West Azerbaijan Providence

Document Type : Full length article

Authors

1 Assistant Professor, Urmia University, Iran

2 PhD Candidate in climatology, University of Tabriz, Iran

3 PhD Candidate in Climatology, University of Tabriz, Iran

Abstract

Introduction
Today, with the increasing population and the need for strategic and industrial crops the farmers are simulated to grow these kinds of crops. Thus, this subject has now been caused the inappropriate use of land and natural resources. On the other hand, the natural environment resources have limited the ability to use its resources and the climate change intensifies this limit ability. Agriculture is one of the most sensitive parts of human activities to changes in climate parameters. The slightest shift in climatological factors of plant growth, the growth of plant processes affected these changes in the performance and quality of crops. In climate change condition, some natural environments with the most appropriate conditions and resources are provided for the development and optimal use of human and with the least appropriate condition the human manipulation can lead to damages to natural environment. Therefore, to any manipulate and development in environment, before planning to use it, we need to evaluate the potential of the environment. In addition to the potential of environments for the future, due to climate change, it is required to consider any planning. The aim of current study is to provide a land suitability assessment in the condition of climate change. Given the sensitivity of crops to climate change, one of the agricultural products as a sample product has been selected to implement the procedure.
One of the strategic and industrial products is Oil-seeds such as canola. Oil-seeds compose the second largest food resources of the world after cereals, and Canola is the third largest source of vegetable oil in the world. A variety of factors and parameters are effective in determination of suitability of any area of land for cultivation and in condition of climate change and changes in temperature and precipitation changes in suitability of lands may be occurred for cultivation of canola. In this study, a new method based on the Geographic Information System (GIS) and climate change model, has been developed for cultivation of canola in West Azerbaijan-Iran.
 
Material and Methods
In the first step, the effective criteria (canolaplant requirements) were recognized using library study. In this study, the GIS based on Artificial Neural Network (ANN), Network Analysis (ANP) and LARS-WG, for modeling the land suitably has been developed. Thus, for evaluating the lands suitability, the climatological data such as temperature, precipitation, growth degree day, relative humidity, freezing days, and sunshine hours were collected for the west Azerbaijan Province from synoptic stations data in 1987-2010 associated with the phonologic stages of canola growth. In addition to the climatological data, the earth resources like topographic layers, lands capability, soil depth and land uses were analyzed with focusing on the climatologic and ecological needs of canola.
All of canola plant requirements in base period (1987-2010) were simulated for three periods in the future. Therefore, the impact of climate change on temperature, precipitation, solar radiation and relative humidity were modeled using LARS-WG and ANN in the future climate condition. Also for simulating the data of future climate, the HADCAM3 of General Circulation Model and A1B and A2 scenarios were used. The importance of each criterion was completed by experts’ opinions. Due to the interaction of the criteria in the actual world, DEMATEL technique was used to recognize the relations among the criteria. ANP was used after completing the pairwise comparisons questionnaires by expert’s viewpoints.
 
Results and Dissection
In this study, the outputs of the minimum and maximum temperatures, the output rainfall and radiation of the model HADCM3, are used to estimate the relative humidity in the periods 2011-2030, 2046–2065 and 2081-2099. Based on the estimates through modelling in the artificial neural networks, the measures of relative humidity have been simulated. The results of the application of the introduced ANN structure for estimating the relative humidity in different modes of the functions and the number of neurons in the first and middle layers show that ANN have a good ability to estimate the relative humidity in the future periods. Results of ANP show that the most important canola plant requirement is elevation and after that are temperature and rainfall.
Implementation of the model shows that in the base period (1987-2010), 15% of lands in study area are in condition of very suitable and 31, 29 and 25% are in suitable, moderate suitable and unsuitable classes, respectively. Based on the results of HADCM3 model, in the second period (2011-2030) the very suitable class is 11% of the province and other classes are 38, 31 and 24 percent of the lands. Thus, in this period the suitable class compared with base period will increase. In the third period, with changes in temperature and rainfall, climate change will cause decrease of lands in condition of unsuitable and very suitable for canola cultivation and the percent of 2 and 3 classes will be increased. In the fourth period, following the changes in temperature and precipitation due to decreases in very suitable class, about 5% of lands and inappropriate lands (about 23 %) will cause decrease in suitable lands for cultivation of canola in West Azerbaijan.
 
Conclusion
The results indicate that the proposed method can well simulate the effects of climate change on Land Suitability Assessment to grow crops. Generally, changes in temperature and precipitation resulted in decreases in the areas of very suitable and suitable lands for cultivation of canola in West Azerbaijan providence. Additionally, the low limits lands will be increased significantly in comparison with the baseline period. As suitable lands for canola cultivation will be changed from 47% in the base period to 34% in the future periods.

Keywords

Main Subjects


1. آزرم، ک. (1389). «سنجش تناسب اراضی استان آذربایجان غربی برای کشت کلزا بر‌اساس روش‌های ارزیابی تصمیم‌گیری چند‌معیاره در محیط GIS». پایان‌نامة کارشناسی ارشد. اردبیل: دانشگاه محقق اردبیلی.
2. آقاابراهیمی سامانی، ب.، ماکوئی، ا. و صدرلاهیجانی، م. (1387). «ارزیابی چالش‌های شرکت‌های ایرانی در پروژه‌های نفت و گاز با تکنیک DEMATEL». مجلة علمی- پژوهشی شریف. ش45: 129-121.
3. باباییان، ا.، نجفی‌نیک، ز.، زابل عباسی، ف.، حبیبی نوخندان، م.، ادب، ح. و ملبوسی، ش. (1388). «ارزیابی تغییر اقلیم کشور در دورة 2039-2010 میلادی با استفاده از ریز‌مقیاس نمایی داده‌های مدل گردش عمومی جو ECHO-G». جغرافیا و توسعه، ش16: 152-135.
4. پتر، ی. (1379). آب‌و‌هوا و عملکرد گیاهان زراعی. ترجمة محمد کافی و دیگران. مشهد: انتشارات جهاد دانشگاهی مشهد.
5. حجارپو، ا.، افشین، س.، ابراهیم، ز. و سیدی، ‌ف. (1392). «شبیه‌سازی اثر تغییر اقلیم بر تولید نخود در شرایط دیم و آبی کرمانشاه». پژوهش تولید گیاهی، ش2: 235-250.
6. رجبی، م.ح.، سلطانی، ا. و زینلی، ا. (1391). «ارزیابی انتشار گازهای گلخانه‌ای و پتانسیل گرمایش جهانی ناشی از آن در تولید گندم در گرگان». تولید گیاهان زراعی. ج5. ش3: 44-23.
7. رضوانی، م.ر.، اروجی، ح.، علیزاده، م. و نجفی، م.س. (1392). «مکان‌یابی احداث پیست‌های اسکی از دیدگاه گردشگری (مطالعة موردی: مناطق شمالی تهران)». برنامه‌ریزی منطقه‌ای. ش10: 44-27.
8. روشن، غ.ر و نجفی، م.س. (1390). «بررسی پتانسیل اثرات تغییر اقلیم بر خشکسالی‌های آیندة کشور با استفاده از خروجی مدل‌های گردش عمومی جو». مطالعات جغرافیایی مناطق خشک، ش6: 108-87.
9. سمیرمی، س.ط.، مرادی ح.ر. و خداقلی، م. (1393). «شبیه‌سازی و پیش‌بینی برخی از متغیرهای اقلیمی توسط مدل چندگانة خطی SDSM و مدل‌های گردش عمومی جو (مطالعة موردی: حوضة آبخیزبار نیشابور). انسان و محیط‌زیست. ش28: 15-1.
10. شائمی، ا. و حبیبی نوخندان، م. (1388). گرمایش جهانی (پیامدهای زیستی و اکولوژیکی)، مشهد: انتشارات دانشگاه فردوسی مشهد.
11. شریعتی، ش. و قاضی شهنی‌زاده، پ. (1379). کلزا. تهران: اداره کل آمار و اطلاعات در امور کشاورزی.
12. عباسی، ف.، باباییان، ا.، ملبوسی، ش.، اثمری، م. و مختاری، ل. (1391). «ارزیابی تغییر اقلیم ایران در دهه‌های آینده (2025 تا 2100 میلادی) با استفاده از ریزمقیاس نمایی داده‌های مدل گردش عمومی جو». تحقیقات جغرافیایی. دورة 27. ش104: 230-205.
13. عبیری، ص. (1386). «تهیة جداول نیازهای اقلیمی و خاکی برای ارزیابی تناسب اراضی کشت کلزا در شرایط ایران براساس روش فائو». پایان‌نامة کارشناسی ارشد. تهران: دانشگاه تربیت مدرس.
14. فرجی سبکبار،ح.ع.، علوی‌پناه، س.ک.، نامی، م.ح. و عشورنژاد، غ. (1392). «ارزیابی مکان استقرار شعب بانک‌ها و مؤسسه‌های مالی و اعتباری منطقة شش شهر تهران با استفاده از روش دیماتیل و فرایند تحلیل شبکه‌ای». پژوهش‌های جغرافیای انسانی. ش85: 94-77.
15. کمال، ع. و مساح بوانی، ع. )1389(. «تأثیر تغییر و نوسانات اقلیمی بر رواناب حوضه با دخالت عدم قطعیت دو مدل هیدرولوژی». نشریة آب و خاک. دورة 24 (5): 931-920.
16. لشکری، ح. و رضایی، ع. (1390). «مکان‌یابی نواحی مستعد کشت کلزا در منطقة سرپل ذهاب». پژوهش‌های جغرافیایطبیعی. ش78: 48-29.
17. مرادی، ر.، کوچکی, ع. و نصیری محلاتی، م. (1392). «تأثیر تغییر اقلیمی بر تولید ذرت و ارزیابی تغییر تاریخ کاشت به‌عنوان راهکار سازگاری». دانش کشاورزی و تولید پایدار. ج23. ش4: 130-111.
18. معافی‌مدنی، ف.، موسوی‌بیگی، م. و انصاری، ح. (1391). «پیش‌بینی وضعیت خشکسالی استان خراسان رضوی طی دورة 2030-2011 با استفاده از روش ریزمقیاس نمایی آماری خروجی مدل LARS». جغرافیا و مخاطرات محیطی. ش3: 37-21.
19. میرمحمدی، س.م. (1387). آمایش سرزمین و ملاحضات امنیت اقتصادی. تهران: انتشارات تدبیر اقتصاد.
20. نجفی، م.س.(1391). «شبیه‌سازی اثر گرمایش جهانی در رخداد و بار بیولوژیک گرد و غبار در غربایران». پایاننامة کارشناسی ارشد. به‌راهنمایی دکتر فرامرز خوش‌اخلاق. تهران: دانشگاه تهران. دانشکده جغرافیا.
21. نجفی، م.‌س.، رسولی، ع.، عشورنژاد، غ. و آزرم، ک. (1393). «پیاده‌سازی مدل سنجش تناسب اراضی برای کشت کلزا با استفاده از سیستم استنتاج فازی (مطالعة موردی: استان آذربایجان غربی)». مطالعات جغرافیایی مناطقخشک. ش15: 130-113.
22. Abbasi, F., Babaeian, E., Malboosi, SH., Asmari M. and Mokhtari, L.G. (2012). "Climate Change Assessment over Iran during Future Decades, Using Statistical Downscaling of ECHO-G Model". Geographical Res.. Vol. 27 (104): 205-230. (In Persian).
23. Abiri, S. (2007). "Tables preparation soil and climatic requirements for land evaluation of canola cultivation in Iran, according to the FAO method". MA Thesis. Tehran: Tarbiat Modares University. (In Persian).
24. Agha-Ebrahimi Samani, B., makuyi, A. and Sadr-Lahiji, M. (2008). "Challenges of Iranian companies in oil and gas projects to DEMATEL"., Vol 25 (45), PP 121-129. (In Persian).
25. Azarm, K. (2010)."Fitness Evaluation of west Azerbaijan Province Lands for Canola Cultivation Based on Multi Criteria Decision Making in GIS Environment". MA thesis.Ardabil: University of Mohaghegh Ardabili. Faculty of Literature & Human Science. (In Persian).
26. Babaeian, I., Nagafineik, Z., Zabolabasi, F., Habeibei, M., Adab, H. and Malbisei S. (2010). "Climate Change Assessment over Iran During 2010-2039 by Using Statistical Downscaling of ECHO- G Model". Geography and Development. Vol. 7 (10): 135-152. (In Persian).
27. Faraji Sabokbar, H.A., Alavi Panah, S.K., Nami, M.H. and Ashournejad, Q. (2013). "Spatial Analysis of the Location of Banks, Financial and Credit Institutions in 6th District of Tehran by DEMATEL techniques and Analytic Network Process (ANP)". Human Geog. Research quarterly. Vol. 45 (3): 77-94. (In Persian).
28. Ghasemi pirbalouti, A., Normohammadi, Gh.,A., Kamali, Gh., Ayeneh Band, A., Porhemmat, J., Abdollahi, Kh. and Golparvar, A.R. (2008). "Integrating Some of the Ecological Factors in Order Sustainable Canola Production Using GIS inSouthwest Iran". American-Eurasian J .Agric. & Environ. Sci. 41: 68-71. (In Persian).
29. Gholipoor, M. and Soltani, A. (2009). "Future climate impacts on chickpea in IranandICARDA". Res. J. Environ. Sci. 3: 16-28. (In Persian).
30. Hajarpour, A., Soltani, A., Zeinali, E. and Sayyedi, F. (2013). "Simulating the impact of climate change on production of Chickpea in rainfed and irrigated condition of Kermanshah". J. of plant production research. Vol. 20 (2): 235-252. (In Persian).
31. Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M. and Wolfe, D. (2011). "Climate Impacts on Agriculture: Implications for Crop Production". Agro. J. 103: 351-370.
32. IPCC (2013). "Fifth Assessment Report (AR5): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX)". http://www.ipcc.ch/report/ar5.
33. Koochaki, A,M., Nassiri, G.A., Kamali, A. and Shahandeh, H. (2006). "Potential impacts of climate change on agrometeorological indicators in Iran". Arid Land Research and Management. 20: 245-259.
34. Kamal, A.R., Massah Bavani, A.R. (2011). "Climate Change and Variability Impact in Basin’s Runoff with Interference of Tow Hydrology Models Uncertainty". Journal of water and soil. No. 24 (5): 920-931. (In Persian).
35. Lashkari, H. and Rezaei, A. (2012). "Site Selection of Potential Cultivation of Canola in Sarpole Zahab District". Physical Geog. Research quarterly. Vol. 43 (78): 29-48. (In Persian).
36. Mir-Mohammadi, S.M. (2008). Land use planning and economic security considerations. Tehran: Economic Policy Publication. (In Persian).
37. Moafi madani S.F., Baygi M.M. and Ansari, H. (2012). "Prediction of Drought in the Khorasan Razavi Province During 2011-2030 by Using Statistical Downscaling of HADCM3 Model Output". Geography and Environmental Hazard. No. 3: 21-38. (In Persian).
38. Moradi, R., Koochaki, A. and Mahallati, M.N. (2014). "Effect of Climate Change on Maize Production and Shifting of Planting Date as Adaptation Strategy in Mashhad". J. of Sustainable agriculture and production Sci.. Vol. 23 (4): 111-130. (In Persian).
39. Najafi, M.S. (2012). "Simulating Global Warming Effects on the Occurrence of Dust storms and their Biological load in the West of Iran". MA Thesis. Tehran: University of Tehran. Faculty of Geography. (In Persian).
40. Najafi, M.S., Rasouli, A.A., Ashournejad, Q. and Azarm. K. (2014). "Implementing of Land Suitability Assessment Models for Canola Cultivation Using Fuzzy Inference System (Case Study: West Azerbaijan)". Arid regions Geographic Studies. No. 15: 113-130. (In Persian).
41. Peter, J. (2000). Weather and Yield. Translated by Mohammad Kafi et al.. Mashhad: Jahad Daneshgahi publication. (In Persian).
42. Rajabi, M.H., Soltani, A. and Zainali, A. (2013). "Evaluation of greenhouse gas emission and global warming potential in wheat production in Gorgan, Iran". J. of Crop Production. Vol. 5 (3): 23-44. (In Persian).
43. Rezvani, M.R., Oroji, H., Alizadeh, M. and Najafi, M.S. (2013). "Site SelectionConstruction of Ski Pistes in Order Tourism (Case study: the Northern Regions of Tehran Province)". Journal of Zonal Planing. No. 10: 27-44. (In Persian).
44. Roshan, Gh.R., Najafi, M.S., Ángel, M., Costa and José, A. Orosa (2014). "Effects ofclimate change on wind energy production in Iran". Arab J Geosci. DOI 10.1007/s12517-014-1374-2.
45. Roshan, Gh. and Najafi, M.S. (2012). "A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global CirculationModelsas Outputs". Arid regions Geographic Studies. No. 6: 87-108. (In Persian).
46. Semiromi, S.T., Moradi, H.R. and Khodagholi, M. (2014). "Simulation and prediction some of climate variable by using multi line SDSM and Global Circulation Models (Case study: Bar Watershed Nayshabour)". Human and Environment. No. 28: 1-15. (In Persian).
47. Shaemi, A. and Habibi Nokhandan, M. (2009). Climate Change the Biological and ecological consequences, Climatological Res.Mashhad: University Of Ferdowsi press.(In Persian).
48. Shariati, S., Ghazi, Sh. (2000). The Canola. Tehran: Bureau of Statistics and Information in agriculture. (In Persian).
49. Tzeng, G.H., Chiang, C.H. and Li, C.W. (2007). "Evaluating Intertwined Effects in E-learning Programs: a Novel Hybrid MCDM Model Based on Factor Analysis and DEMATEL, Expert Systems with Applications". An International Journal. Vol. 32. No. 4: 1028–1044.
50. Xu, Y.P., Zhang, X. and Tian, Y. (2012). "Impact of climate change on 24-h design rainfall depth estimation in Qiantang River Basin, East China". Hydrology Process. doi: 10.1002/hyp.9210.
51. Xu, Y.P., Zhang, X. and Tian, Y. (2012). "Impact of climate change on 24-h design rainfall depth estimation in Qiantang River Basin, East China". Hydrology Process. doi: 10.1002/hyp.9210.
52. Zarghami, M., Abdi, A., Babaeian, I., Hasanzadeh, Y. and Kanani, R. (2011). "Impacts of Climate Change on Runoffs in east Azerbaijan, Iran". Global and Planetary Change. Vol. 78. Issue. 3-4 :137-146.