Active Faulting and Its Effects on Quaternary Landform Deformation in North-East Lake Urmia, Iran

Document Type : Full length article

Author

Assistant Professor, Urmia University, Urmia, Iran

Abstract

Introduction
Iran forms a relatively compact zone of active continental deformation resulted from the northward collision of Arabia with Eurasia during late Cenozoic times, which is continuing to the present-day at a rate of 25 mm/yrs (from GPS data). Evidences of active tectonic in different parts of Iran, has been studied and identified. The arid climate, low rates of erosion, and minimal vegetation cover across the majority of the country result in excellent preservation and exposure of surface deformation produced by active faults. Geomorphic indices are useful tools for evaluation of active tectonics because they can provide rapid insight concerning specific areas within a region which is undergoing adjustment to relatively rapid and even slow rates of active tectonics. Alluvial fans, river terraces, runoff anomaly and horizontal and vertical displacement of faults are the most important landforms that indicate active tectonics and active faults. Active tectonics play a very important role in deformations of the alluvial fans. Without continued tectonics, fans may become minor or short-lived features. Morphological evidence of different types of faults such as thrust faults and strike-slip faults can be determined in surface of quaternary landforms. For example, Late Quaternary activity on strike-slip faults can be determined from the lateral displacement of young landforms such as river terraces and alluvial fans, or from scarps introduced by slight dip-slip components of motion. In this study, the evidence and impacts of the active faults have been investigated in quaternary landforms such as river terraces, stream displacements and spatially alluvial fans morphometry and morphology located at the south part of the MishoDagh Mountain in northwest Iran.
 
Materials and Methods
The method is based on the obtained qualitative and quantitative data. The quantitative data includes satellite image interpretation and digital elevation models, alluvial fan morphometry, channel displacement and rate of sediments uplift. Longitudinal and cross profile and gradient analysis used to interpret the active fault effects on alluvial fans. Topography maps (1:25000), ETM, SPOT and Quickbird satellite images with 30, 15 and less than 3 m spatial resolution, geology maps (1:100000) and digital elevation models (10m pixel resolution) were applied in this study. For such interpretation, ArcGIS, ENVI and Freehand software were utilized. All of the maps were produced using freehand and ArcGIS software.  The field works for investigation of the evidence of fault activities were performed. Field studies were performed for the identification and measurement of parameters such as the uplift of sediments, displacements of river, alluvial fans, and channel avulsion and river terraces. Finally, the data obtained during field studies are compared and analyzed through quantitative and descriptive methods. It was also attempted to estimate spatial development and effectiveness of active tectonics on quaternary landforms and alluvial fans.
 
Results and Discussion
The study area of this research is located in south part of MishoDagh Mountains, northwest Iran (north of Lake Urmia). Tabriz fault is located in east part of the study area. There are three main faults in this area. South Misho Fault (SMF) is located in mountain front and affects the apex of alluvial fans and river terraces. The faults of Shabestar, Daryan-Heris-Shanlan, and Sharafkhane  are located far from the mountain front. South Misho Fault has caused displacement of the main channel in fan apex, and alluvial terrace sequence. This fault has elevated river terraces about 150m from river bed.  while evidence of the activities of the two other faults are more, and has caused uplifting of terain, derelict of fan surface, change of intersection point, uplift of fan sediment and lateral change of fan surface channels. The slope of most alluvial fans is 3-5 percent. The Sis fan is the largest fan in the study area. This fan is combined from several quaternary surfaces elevated in response to fault activity. Sis fan are affected by the faults more than the others and reformated to present landform since quaternary. The faults of Shabestar, Sharafkhane and Heris-Daryan-Shanjan are strike-slip faults that have changed rivers and runoff laterally.
 
Conclusion
The findings show that the faults of Shabester, Sharafkhane, Heris-Daryan-Shanjan and South Misho were active in quaternary. The position and forms of alluvial fans are affected by the activities of these faults. The faults have had either lateral or vertical displacements. The findings have also indicated that the alluvial fan forms and their longitudinal and lateral profiles are affected by Shabester, Sharafkhane, Heris-Daryan-Shanjan faults. Investigations show that there is no statistical correlation among the variables that affect the alluvial fans. Generally, tectonic activities disrupt natural evolution of alluvial fans. Each fault has a different effect on alluvial fan evolution. South Misho fault has caused the displacement of the main channel and the formation of river terraces. Therefore, has increased slope of this part. Other faults have caused uplift of fan deposits, change in the intersection point and reconstruction of new alluvial fans in the lower part of this point. Remote sensing studies can provide a valuable first step in the identification and analysis of active faulting in actively deforming regions.

Keywords

Main Subjects


اسماعیلی، ر.؛ متولی، ص.؛ حسین‌زاده، م.م. (1391). بررسی اثرات مورفوتکتونیک در نیمرخ طولی رودخانة واز، البرز شمالی، استان مازندران، پژوهش‌های ژئومورفولوژی کمی، 3، زمستان: 101-114.
جباری، ن.؛ ثروتی، م.ر.؛ حسین‌زاده م.م. (1391). مورفوتکتونیک فعال حوضة آبریز حصارک با استفاده از شاخص‌های مورفومتریک، فصلنامة پژوهش‌های ژئومورفولوژی کمی، 2: 17-34.
رجبی، م.؛ آقاجانی، ک. (1389). بررسی گسل‌ها، توان لرزه‌زایی و خطر زمین‌لرزه در مخروط‌افکنه‌های شمال‌شرق دریاچة ارومیه، فصلنامة پژوهش‌های جغرافیای طبیعی، 3(7): 1-14
رحیم‌زاده، ز.؛ علایی طالقانی، م.؛ رضاپور، ع. (1393). ارزیابی کمی فعالیت‌های تکتونیکی در حوضة ریجاب، فصلنامة تحقیقات جغرافیایی، 2، تابستان: 211-224.
رضایی مقدم، م.ح.؛ خیری‌زاده آروق، م.؛ سرافروزه، س. (1392). ارزیابی تکتونیک فعال در دامنة جنوبی میشو داغ، مجلة پژوهش‌های ژئومورفولوژی کمی، 2(3): 141-158.
عزتی، م.؛ آق‌آتابای، م. (1392). تحلیل زمین‌ساخت فعال حوضة بجنورد با کمک شاخص‌های مورفوتکتونیکی، پژوهش‌های ژئومورفولوژی کمی، 4، بهار:130-144.
قهرمانی ز.؛ نظری، ا.؛ نظری، ح.؛ پورکرمانی، م. (1393)، ریخت‌زمین‌ساخت، هندسه و سازوکار جوان پهنة گسلی صوفیان- شبستر، آذربایجان (ایران)، مجلة علوم زمین، 23 (92): 155-164.
کرمی، ف.؛ رجبی، م.؛ عسگری، م. (1392)، تحلیل فعالیت‌های نئوتکتونیک در شمال رشته‌کوه بزقوش با استفاده از روش‌های ژئومورفولوژیکی، فصلنامة تحقیقات جغرافیایی، 2، 92: 141-158.
مختاری، د. (1384). نقش نوزمین‌ساخت در تکامل سامانه‌های رودخانه‌ای شمال میشو داغ در کواترنر، مجلة علوم زمین، 57، پاییز.
یمانی، م.؛ گورابی، ا. (1389). بررسی زمین‌ساخت ناحیة دهشیر با استفاده از روش‌های ژئوموفومتری، فصلنامة پژوهش‌های جغرافیای طبیعی، 72: 1-20.
Ambraseys, N.N.; Melville, C.P. (1982). A History of Persian Earthquakes. Cambridge University Press, UK.
Beaty, C.B. (1963). Origin of alluvial fans, White Mountains, California and Nevada. Ann. Assoc. Am. Geogr. 53, 516–535.
Bilham, R. (2004). Earthquakes in India and the Himalaya: Tectonics, geodesy and history, Ann. Geophys., 47, 839–858.
Blair, T.C.; McPherson, J.G. (1994). Alluvial fan processes and forms. In: Abrahams, A.D., Parsons, A.J._Eds., Geomorphology of Desert Environments. Chapman & Hall, London, pp. 354–402.
Bull, W.B. (2009), Tectonically Active Landscape, John Wiley & Sons.
Bull, W.B. (1977) The alluvial fan environment. Progress in Physical Geography 1: 222–270.
DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. (1990). Current plate motions, Geophys. J. Int., 101: 425–478.
Esmaeili, R.; Motavli, S.; Hoseinzade, M. (2012). Effects of morphotectonics on Vaz river profile, north alborz, mazandaran provience, Quantitative Geomorphological Research, 3: 104-114
Ezzati, M.; Aghaatabi, M. (2012). Investigation of active tectonic in Bojnord basin using morphotectonic index, Quantitative Geomorphological Research, 4: 130-144.
Fattahi, M. (2006). Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL), Earth and Planetary Science Letters, pp. 20-34.
Ghahramani, A.; Nazari, H.; Pourkermani, M. (2014). Morphotectonics, Kinematics and Geometry of the Fault Zone, Azerbaijan (NW Iran) Sufian-Shabestar. Scientific Quarterly Journal, Geosciences, 23(92): Summer.
Harvey, A.M. (1987). Alluvial fan dissection: relationship between morphology and sedimentation. In: Frostik, L., Reid, I. (Eds.), Desert Sediments: Ancient and Modern, Vol. 35. Geological Society of London Special Publication, London, pp. 87– 103.
Holinsworth, J. (2010). Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left‐lateral Astaneh fault system during the great 856 A.D. Qumis earthquake, Journal of Geophysical Research, vol 115.
Jabbari, N.; Servati, M.; Hoseinzade, M. (2012). Active tectonics of Hesarak basin using morphometric index, Quantitative Geomorphological Research, 2: 17-34.
Karami, F.; Rajabi, M.; Asghari, M. (2012). Analyze of neotectonic activities in north ward of Bozghosg range using geomorphological methods, Geographical Research, 2: 141-158.
Lettis, W.R.; Wells, D.L.; Baldwin, J.N. (1997). Empirical observations regarding reverse earthquakes, blind thrust faults, and Quaternary deformation: are blind thrust faults truly blind? Bulletin of the Seismological Society of America, 87: 1171–1198.
Maggi, A.; Priestley, K.; Jackson, J. (2002). Focal Depth of Moderate and Large Size Earthquake in Iran. Journal of Seismology and Earthquake Engineering. 4(2-3):1-10.
Masson, F.; Anvari, M.; Djamour, Y.; Walpersdorf, A.; Tavakoli, F.; Daigni`eres, M.; Nankali, H.; van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int., 170: 436–440.
McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 155:126–138.
Mokhtari, D. (2005). Role of Neotectonics on Fluvial Systems in the Quaternary Case Study: Rivers of Northern Slope of Misho-Dagh Mountains, Northwest Iran, Geo Science, No 57.
Nazari, H.; Ritz, J.F.; Shafei, A.; Ghassemi, A.; Salamati, R.; Michelot, J.L.; Massault, M. (2009). Morphological and paleoseismological analyse of the Taleghan fault, Alborz, Iran, Geophys. J. Int., 178: 1028–1041.
Parsons, A. (2009). Geomorphology of Desert Environments, Springer Science+Business Media, London. 
Rachocki, A. (1981). Alluvial fans, an attempt at an empricial approach, John Wiley publications, New York.
Rahimzade, Z.; Taleghani, M.; Rezapor, A. (2013). Quantities Investigation of tectonic activities in Rijab basin, Geographical Research, 2: 211-224.
Rajabi, M.; Aghajani, K. (2010). Study of faults, Earthquake hazards and shaking in northeast urmia lake alluvial fans, Physical Geography Research Quarterly, 7: 1-14.
Ramirez- Herrera, M.T., (1998). Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic belt. Earth Surface Processes and Landforms, 23: 317-322.
Regard, V., et al. (2005). Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran, Geophys. J. Int., 162(1): 177–203.
Rezaei Moghadam, M.H.; Kheyrizadeh, M. (2013). Active tectonic assessment in MishoDagh south hillside, Quantitative Geomorphological Researches, 3: 141-158.
Rizza, M.; Mahan, S.; Ritz, J.F.; Nazari, H.; Hollingsworth, J.; Salamati, R. (2011). Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran. Quaternary Geochronology.
Sella, G.F.; Dixon, T.H.; Mao, A. (2002). REVEL: a model for recent plate velocities from space geodesy, J. geophys. Res., 107(B4), ETG 11–1, 11–32.
Talebian, M.; Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran, Geophys. J. Int., 156(3): 506–526.
Vernant, P.; Nilforoshan, F.; Hatzfeld, D.; Abbassi, M.R.; Vigny, C.; Masson, D. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophysical Journal International, 157(1): 381-398.
Vernant, P. et al., (2004). Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth planet. Sci. Lett., 223: 177–185.
Walker, R.; Jackson, J. (2002). Offset and evolution of the Gowk fault, S.E. Iran: a major intra-continental strike-slip system. Journal of Structural Geology, 24: 1677-1698.
Walker, R.; Jackson, J.; Baker, C. (2003). Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences. Geophysical Journal International, 152: 749-765.
Yamani, M.; Gorabi, A. (2009). Morphotectonics of Dehshir region using geomorphometry methods, Physical Geography Research Quarterly, 72: 1-20.