سلطانی، ع.؛ قربانی، م.ع.؛ فاخریفرد، ا.؛ دربندی، ص. و فرسادیزاده، د. (1389). برنامهریزی ژنتیک و کاربرد آن در مدلسازی فرایند بارش- رواناب، دانشآبوخاک، 1(4): 61 ـ 71.
شریفی، ع.ر.؛ دینپژوه، ی.؛ فاخریفرد، ا. و مقدمنیا، ع.ر. (1392). ترکیب بهینة متغیرها برای شبیهسازی رواناب در حوضة آبخیز امامه با استفاده از آزمون گاما، دانشآبوخاک، 23(4): 59 ـ 72.
فربودنام، ن.؛ قربانی، م.ع. و اعلمی، م.ت. (1388). پیشبینی جریان رودخانه با استفاده از برنامهریزی ژنتیک (مطالعة موردی حوضة آبخیز لیقوان)، دانشآبوخاک، 19(1): 107 ـ 122.
مسعودی، ا.؛ پارسامهر، پ.؛ سلماسی، ف. و پوراسکندر، س. (1391). تخمین ضریب دبی در سرریزهای لبة پهن مرکب با استفاده از رگرسیون، برنامهریزی ژنتیک، و شبکة عصبی، آبوخاک، 26(4): 933 ـ 942.
Aytek, A.; Asce, M. and Alp, M. (2008). An Application of Artificial Intelligence for Rainfall-Runoff Modeling, Hydrology Earth System science, 117(2): 145-155.
Chiang, J.L. and Yeh, C.H. (2010). Suspended Sediment Forecasting in Gao-Pen River using Artificial Neural Network, Vol. 12, EGU2010-7549.
Dai, X.; Huo, Z. and Wang, H. (2011). Simulation for Response of Crop Yield to SoilMoisture and Salinity with Artificial Neural Network, Field crops research, 121: 441-449.
DanandehMehr, A.; Kahya, E. and Olyaie, E. (2013). Streamflow Prediction using Linear Genetic Programming in Comparisonwith a Neuro-Wavelet Technique, Journal of Hydrology, 505: 240-249.
DanandehMehr, A.; Kahya, E. and Yerdelen, C. (2014). Linear Genetic Programming Application for Successive-Station Monthly Stream Flow Prediction, Journal of Computers and Geosciences, 70: 63-72.
Dawson, C.W and Wilby, R.L. (2001). Hydrological modeling using artificial neural network, Progress in Physical Geography, 25(1): 80-108.
Dorado, J.; Rabunal, J.R.; Pazos, A.; Rivero, D.; Santos, A. and Puertas, J. (2003). Prediction and Modeling of the Rainfall-Runoff Transformation of a Typical Urban Basin using ANN and GP, Applied Artificial Intelligence, 17: 329-343.
Farboudfam, N.; Ghorbani, M.A. and Alami, M.T. (2009). River Flow Prediction Using Genetic Programming (Case Study: Lighvan River Watershed), Journal of Soil and Water Science, 19(1): 107-122 (In Persion).
Gharaei-Manesh, S.; Fathzadeh, A. and Taghizadeh-Mehrjardi, R. (2016). Comparison of Artificial Neural Network and Decision Tree Models in Estimating Spatial Distribution of Snow Depth in a Semi-Arid Region of Iran, Cold Regions Science and Technology,122: 26-35.
Ghorbani, M.A.; Khatibi, R.; Aytek, A.; Makarynskyy, O. and Shiri, J.) 2010). Sea water Level Forecasting using Genetic Programming and Artificial Neural Networks, Computers and Geoscience, 36(5): 620-627.
Harun, S.; Ahmat Nor, N.I. and Kassim, A.H.M. (2002). Artificial Neural Network Model for Rainfall-Runoff Relationship, Journal Technology, Vol. 37, (B) Dis. 2002: 1–12© University Technology Malaysia.
Hosseini, S.M. and Mahjouri, N. (2016). Integrating Support Vector Regression and a Geomorphologic ArtificialNeural Network for Daily Rainfall-Runoff Modeling, Applied Soft Computing, 38: 329-345.
Huo, Z.; Feng, S.; Kang, S.; Huang, G.; Wang, F. and Guo, P. (2012). Integrated Neural Networks for Monthly River Flow Estimation in Arid Inland Basin of Northwest China, Journal of Hydrology, 420-421: 159-170.
Jayawardena, AW; Muttil, N. and Fernando, T. (2005). Rainfall-Runoff Modelling using GeneticProgramming, International Congress on Modelling and Simulation Society ofAustralia and New Zealand, December 2005, New Zealand, PP. 1841-1847.
Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Natural Selection, A Brafdford book Cambridge, MIT Press.
Masoodi, A.; Parsamehr, P.; Salmasi, F. and Pureskandar, S. (2012). Regression Analysis, Genetic Programming and ANN to Predict Discharge Coefficient of Compound Broad Crested Weir, Journal of Water and Soil, 26(4): 933-942 (In Persion).
Pramanik, N. and Panda, R.K. (2009). Application of Neural Network and Adaptive Neurofuzzy Inference Systems for River Flow Prediction, Journal of Hydrology, 54(2): 247-260.
Sarangi, A. and Bhattacharya, A.K. (2005). Comparison of Artificial Neural Network and Regression Models for Sediment Loss Prediction from Banha Watershed in India, Agricultural water management, 28(4): 373-385.
Sharifi, A.R.; Dinpashoh, Y.; Fakheri-Fard, A. and Moghaddamnia, A.R. (2013). Optimal combination of Variables for Runoff Simulation in the Amameh Wtershed using Gamma test, Water and Soil Science, 23(4): 59-72 (In Persion).
Sinivasulu, S. and Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall-runoff models, Applied Soft Computing, 6: 295-306.
Solaimani, K. (2009). Rainfall-Runoff Prediction Based on Artificial Neural Network (A Case Study: Jarahi Watershed), American-Eurasian Journal of Agriculture and Environment, Science, 5(6): 856-865.
Soltani, A.; Ghorbani, M.A.; Fakherifard, A.; Darbandi, S. and Farsadizadeh, D. (2010): Genetic programming and its application in modeling the rainfall-runoff process, Journal of Soil and Water, 1(4): 61-71 (In Persion).
Sudheer, P.K.; Gosain, A.K. and Ramasastri, K.S. (2002). A Data Driven Algorithm for Constructing Artificial Neural Network Rainfall- Runoff Models, Journal of Hydrology, 16(6): 1325-1330.
Tao, W.; Kailin, Y. and Yongxin, G. (2008). Application of Artificial Neural Networks to Forecasting Ice Conditions of the Yellow River in the Inner Mongolia Reach, Journal of Hydrology, 13(9): 811-816.
Wang, W.C.; Chau, K.W.; Cheng, Ch.T. and Qiu, L. (2009). A Comparison of Performance of Several Artificial Intelligence Methods for Forecasting Monthly Discharge Time Series, Journal of Hydrology, 374(3-4): 294-306.
Wu, C.L.; Chau, K.W. and Li, Y.S. (2009). Methods to Improve Neural Network Performance in Daily Flows Prediction, Journal of Hydrology, 372(1-4): 80-93.