Prioritization of suitable axes for construction of underground dam in the Doostbeiglou watershed

Document Type : Full length article


1 Associate Professor, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D. Candidate, Faculty of Natural Resources, Sari Agriculture and Natural Resources University, Iran

3 M.Sc., Faculty of Natural Resources, Sari Agriculture and Natural Resources University, Iran


Water resources management in arid and semi-arid areas is very important to provide water for stakeholders. In recent decades, construction of underground dams has been considered for the issue, because of its advantages. These dams have many advantages, e.g., unlike a surface dam, land is not submerged to store water and there is no danger of breaching due to natural or manmade disasters. The surface area can be used in the same way both before and after construction of the underground dam. A subsurface dam is a facility that stores groundwater in the pores of strata and uses groundwater in a sustainable way. Underground dams are used for various purposes such as prevention of combining salt water and fresh water, reserve water for management using and creating an obstacle against influencing water to structures. The water gathered in subsurface dams has good quality for drinking, as it has been filtered by the sand and is stored underground away from contamination. The aim of this research is to identify the areas suitable for underground dam construction, so that in these areas there is no limit to the underground dam and then appropriate priorities in these areas.
Materials and Methods
Doostbeigloo watershed with an area of 7461 square kilometers is located in the Ardebil province (North Western Iran). In this research, we have considered several criteria for suitable site selection of underground dams in watershed, including: topography, hydrography, hydrogeology, geology and land use. These factors were used to initial mapping suitable regions for underground dam construction. Firstly, for this purpose we have used Boolean logic and fuzzy logic models. Then, we have also used the analytical hierarchy process to prioritize the suitable axes in appropriate areas for underground dam construction.
Boolean logic
Boolean (logic) algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. The value 1 is for suitable areas and 0 for unsuitable areas. The maps of different factors involved in locating underground dam in the GIS environment were combined using Boolean logic. Therefore, the map of suitable areas for underground dam construction was created.
Fuzzy logic
In a Fuzzy logic the layers are weighted in values from zero to one, which gives more data than Boolean method. This method is defined as Fuzzy AHP in many studies. In this research with regarding donned studies we used 0.9 fuzzy gamma operator in order to find suitable areas for underground dam construction.
Analytic Hierarchy Process (AHP) method
The analytic hierarchy process (AHP) is a structured technique for organizing and analyzing complex decisions. It provides a comprehensive and rational framework for structuring a decision problem, for representing and quantifying its elements. In this step after determining the suitable areas for underground dam construction, AHP method was used for prioritization of appropriate axes. The AHP method is based on analysis, binary compression, summarizing, prioritizing and selection among alternatives. After determining the subject, it’s divided to many criteria, and many various sub criteria. In this method assessment for selecting criteria is performed with consistency index (C.I). Based on previous studies, the (C.I) must be less than 0.1 value.
Results and Discussion
The extracted results showed that the areas in the southeast and northwest are unrestricted for underground dam construction. Site selection of the underground dam with using Boolean logic and Fuzzy logic showed that suitable areas in 3 streams are more than other stream in ranks. This is in accordance with previous studies. The compatibility rate value for AHP method was obtained 0.03 that this rate in AHP method is acceptable. The results from prioritization of the selected dams in this area showed that water criteria are the most important factor to prioritize the proposed axis. The water quantity and quality criteria with 0.11 and 0.104 weights, respectively, have the highest important than other criteria. The 9 number axes located in Meshgin shahr plain and 30, 33 and 34 number axes in Ardabil plain are more preferred than other axes.
Construction of underground dam and use of surface runoff is an appropriate way to secure and expand water supplies. The Boolean logic and Fuzzy logic showed suitable areas for construction of underground dams with acceptable accuracy and between these methods the Fuzzy logic model showed higher performance than Boolean logic method. With using of AHP method, we determined the axes that are more prefered for construction of underground dam than other axis. This can be said that using GIS and satellite images to locate underground dams has a significant impact on the success of the project, because the maps produced in this process can be used at a later stage and as an executive guide for underground dam construction. Thus, with utilization of these methods we can show suitable areas and axis for underground dam construction in the Doostbeigloo Watershed.


Main Subjects

آذر، ع. و رجب‏زاده، ع. (1387). تصمیم‏گیری کاربردی(با رویکرد MADM)، تهران: نگاه دانش.
پیرمرادی، ر.؛ نخعی، م. و اسدیان، ف. (1389). تعیین مناطق مناسب جهت احداث سد زیرزمینی با استفاده از سیستم اطلاعات جغرافیایی و AHP (مطالعة موردی: دشت ملایر در استان همدان)، فصلنامة جغرافیای طبیعی، 3(8): 51 ـ 66.
پیرمرادیان، ر.؛ بهبهانی، س.م.؛ نظری‏فر، م. و ولایتی، س. (1392). پهنه‏بندی اولیة مکان‏های مناسب احداث سد زیرزمینی در دشت ایوانکی،اولینهمایش ملی چالش‏های منابع آب و کشاورزی، دانشگاه آزاد اصفهان.
چزگی، ج.؛ مرادی، ح.ر. و خیرخواه، م.م. (1389). مکان‏یابی محل‏های مناسب جهت احداث سد زیرزمینی با استفاده از روش تصمیم‏گیری چندمعیاره با تأکید بر منابع آب، مجلة علوم و مهندسی آبخیزداری ایران، 4(13): 65 ـ 68.
حاجی‌عزیـزی، ش.؛ خیرخواه زرکش، م. و شریفی، ا. (1389). تعیـین آبراهـه‏هـای مناسـب احداث سد زیرزمینی به روش تصمیم‏گیری چندمعیاره و با تکیه بر تکنیک‏های سنجش از دور و سیستم اطلاعـات جغرافیایی، پایـان‌نامة کارشناسـی ارشـد، گـروه سـنجش از دور و سیستم اطلاعات جغرافیایی، دانـشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.
خرمی، ک.؛ وهاب‏زاده، ق.؛ سلیمانی، ک. و طلایی، ر. (1392). انتخاب محل‏های مناسب سد زیرزمینی در حوضة آبخیز قره‏سو، پایان‏نامة کارشناسی ارشد، رشتة مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
خرمی، ک.؛ وهاب‏زاده، ق.؛ سلیمانی، ک. و طلایی، ر. (1393). تعیین مناطق مناسب سد زیرزمینی در حوضة آبخیز قره‏سو، نشریة مهندسی و مدیریت آبخیز، 6(2): 139 ـ 154.
سلیمانی، س.؛ نیکودل، م.م.؛ ارومیه‏ای، ع. و بهرامی، ح. (1387). مکان‏یابی گزینه‏های مناسب جهت احداث سدهای زیرزمینی با استفاده از GIS و RS، سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز.
طباطبایی‏ یزدی ،ج. و نبی‏پی‏لشکریان، س. (1382). سدهای آب زیرزمینی جهت تأمین آب در مقیاس کوچک، انتشارات پژوهشکدة حفاظت خاک و آبخیزداری تهران.
عابدینی، م.؛ میرزاخانی، ب. و عسگری، آ. (1394). پهنه‎بندی ژئومرفولوژیکی تناسب زمین در شهرستان اراک با استفاده از مدل منطق فازی، فصلنامة برنامه‏ریزی منطقه‎ای، 5(18): 59 ـ 72.
عبادی‌نژاد، سید علی؛ یمانی، مجتبی؛ مقصودی، مهران و شادفر، ص. (1386). ارزیابی کارایی عملگرهای منطق فازی در تعیین توانمندی زمین‌لغزش، مجلة علوم و مهندسی آبخیزداری ایران، 1: 44 ـ 93.
عشقی‏زاده، م. و نورا، ن. (1389). تعیین محل مناسب احداث سد زیرزمینی بر روی قنات، مجلة پژوهش‌های حفاظت آب و خاک، 7(3): 45 ـ 64.
عیسوی، و.؛ کرمی، ج.؛ علی‌محمدی، ع. و نیک‏نژاد، ع. (1391). مقایسة دو روش تصمیم‏گیری AHP و Fuzzy – AHP در مکان‏یابی اولیة سدهای زیرزمینی در منطقة طالقان، فصلنامة علوم زمین، 22(85): 27 ـ 34.
قارزی، ر.؛ نجفی‏نژاد، ع.؛ نورا، ن.؛ دهقانی، ا.ا. و فیله‏کش، ا. (1391). مسائل اقتصادی‌- اجتماعی سد زیرزمینی در آبخیز بفرة سبزوار، هشتمین همایش ملی علوم و مهندسی آبخیزداری ایران، خرم‏آباد.
مهندسین مشاور قطرة باران صحرا (1384). مطالعات بیلان و چرخة آب محدودة مطالعاتی اردبیل، ج 2، گزارش آب‏های زیرزمینی.
نادری، ف. (1391). کاربرد منطق فازی در پهنه‏بندی خطر زمین‌لغزش در حوضة آبخیز چرداول ایلام، پژوهش‏های آبخیزداری، 94: 74 ـ 85.
یوسفی سنگانی، ک.؛ محمدزاده، ح. و اکبری، م. (1393). ارزیابی پتانسیل آب زیرزمینی با روش تلفیق فازی و مدل تحلیل سلسله‌مراتبی، فصلنامة بین‏المللی توسعة منابع آب، 2(4): 127 ـ 141.
Abedini, M.; Mirzakhani, B. and Asgari, A. (2015). Geomorphological zoning for determining land suitability in Arak city byusing fuzzy logic model, Journal of Zonal Planning, 5(18): 59-72.
Azar, A. and RajabZadeh, A. (2008). Applied Decision (MADM approach), Negahe Danesh publication, Tehran, pp. 230.
Barkhordari, J. (2015). The pre-selection of suitable sites for small underground dams in arid areas using GIS (A casestudy in Yazd_Ardakan watershed), International Geoinformatics Research and Development Journal, 6(1): 18-27.
Chezghi, J.; Moradi, H.M. and KheirkhahZarkesh, M.M. (2012). Selection of suitable sites for underground dams using multi criteria decision making with an emphasis to water resources (Case Study: West of Tehran Province), Iranian Journal of Watershed Management Science and Engineering, 4(13): 65-68.
Dorfeshan, F., Heidarnejad, M.; Bordbar, A. and Daneshian, H. (2014). Locating suitable sites for underground dams construction through analytic hierarchy process. International Conference on Earth, Environment and Life Sciences (EELS-2014) Dec. 23-24, Dubai (UAE).
Esavi, V.; Karami, J.; Alimohammadi, A. and Niknezhad, S.A. (2013). Comparison of AHP and FUZZY-AHP methods for underground dam site selection in Taleghan basin, Journal of Geoscience, 85: 27- 34.
Eshghizadeh, M. and Noora, N. (2011). Determining the suitable sites for underground dams construction on aqueduct, case study, Dahanchenar aqueduct of Kalat watershed in Gonabad, Journal of Water and Soil Conservation, 7(17): 45-64.
Forzieri, G.; Gardenti, M.; Caparrini, F. and Castelli, F. (2008). A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali, Journal of Physics and Chemistry of the Earth, 33: 74-85.
Garagunis, C.N. (1981). Construction of an impervious diaphragm for improvement of a subsurface water reservoir and simultaneous protection from migrating salt water, Bulletin of Engineering Geology and the Environment, 24(1): 169-172.
Gharzi, R.; Najafinezhad, A.; Noora, N.; Dehghani, A.A. and Filehkesh, E. (2013). Economic-Social issues of underground dam in Bafreh (Sabzehvar) watershed, 8th Iranian National Conference on Sciences and Watershed Management Engineering, Lorestan University, Khoram Abad, Iran.
Gupta, R.N.; Mukherjee, K.P. and Singh, B. (1987). Design of artificial underground dams for mine water storage, Mine Water and the Environment, 6(2): 1-14.
Hajiazizi, Sh.; Kheirkhah, M. and Sharifi, A. (2010). Determining appropriate stream for underground dam construction with multi criteria decision making methods based on remote sensing and GIS techniques, Master degree thesis, remote sensing and GIS group, Islamic azad university, science and research branch, Tehran.
Hanson, G. and Nilsson, A. (1986). Groundwater dams for rural water supplies in developing countries, Ground Water, 24(4): 497-506.
Ishida, S.; Tsuchihara, T.; Yoshimoto, S. and Imaizumi, M. (2011). Sustainable use of groundwater with underground dams, Review, JARQ, 45: 51-61.
Khorrami, k.; Vahhabzadeh, Gh.; Soleimani, K. and Talaei, R. (2013). Selection suitable sites of underground dam in the Gharesou watershed, Mater degree thesis, watershed management group, Sari Agricultural and Natural Resources University, pp. 122.
Khorrami, k.; Vahhabzadeh, Gh.; Soleimani, K. and Talaei, R. (2014). Determining the suitable areas of underground dam in Gharasou ‎watershed, Journal of Watershed Engineering and Management, 6(2): 139-154.
Luyun, R.J.; Momii, K.; Nakagawa, K. and Fujiyama, S. (2008). Salt water dynamics due to cut-off wall installation in coastal unconfined aquifers, Vol. 320. Copenhagen, Denmark, 9-13 September 2007, pp. 214-219.
Naderi, F. (2012). Applying fuzzy logic to mapping susceptibility of landslide in Chardavel watershed in Ilam province, Watershed Management Research, 94: 74-85.
Nilsson, A. (1988). Groundwater dams for small scale water supply, IT publications, pp. 69.
Onder, H. and Yilmaz, M. (2000). Underground dams: A tool of sustainable development and management of groundwater resources, European Water, 11(12): 30-40.
Pirmoradi, R.; Nakhaei, M.  and Asadian, F. (2011). Determining suitable areas for underground dam construction using GIS and AHP, Case study: Malayer plain in Hamedan province, Natural Geography, 8: 51-66.
Pirmoradian, R.; Behbahani, S.; Nazarifar, M. and Velayati, S. (2014). Initial mapping suitable locations for underground dam construction in Eyvanakey plain, The first national conference on water resources and agricultural challenges, Islamic azad university, Isfahan branch.
Rezaei, P.; Rezaei, K.; Nazari-Shirkouhi, S. and Jamalizadeh, M.R. (2013). Application of fuzzy multi criteria decisionmaking analysis for evaluating and selecting the best location for underground dam construction, Acta Polytechnica Hungarica, 10(7): 187-205.
Shenkut, M. (1999). Design of subsurface dam for Bori‏Village, Addis‏Ababa, Ethiopia.
Soleimani, S.; Nikoodel, M.; Oroumiey, A. and Bahrami, H. (2009). Suitable site selection of underground dam Using RS and GIS, Third Conference of Iran Water Resources Management, Tabriz university.
Tabatabei Yazdi, J. and Nabipey, S. (2004). Underground water dams for small-scale water supply, Soil Conservation and Watershed Management Research Institute, Tehran, Iran, 63 pp.
Telmer, K. and Best, M. (2004). Underground dams: A practical solution for the water needs of small communities in semiarid regions, School of Earth and Ocean Sciences, University of Victoria.
Yousefi, K.; Mohammadzadeh, H. and Akbari, M. (2014). An evaluation of groundwater potential zones using combined fuzzy-AHP method and GIS/RS techniques A case study of NE Hezarmasjed mountain, Khorasan Razavi province, International bulletin of water resources and development, 7: 127-141.
Volume 48, Issue 4
January 2017
Pages 645-659
  • Receive Date: 10 April 2016
  • Revise Date: 15 June 2016
  • Accept Date: 28 June 2016
  • First Publish Date: 21 December 2016