Simulation Effects of Improvement and Restoration Operations of Rangeland on Soil Loss using RUSLE Model

Document Type : Full length article


1 Associate Professor of Range and Watershed management, Sari Agriculture Science and Natural Resources University

2 MSc Student in Range Management, Sari Agriculture Science and Natural Resources University

3 Associate Professor of Range and Watershed management, Sari Agriculture Science and Natural Resources University.


Rangelands are natural ecosystems with native plant species. Water, soil and vegetation have fundamental role in management of natural ecosystems such as rangelands. Thus, it is essential to perform researches for preservation of the natural and human environment. Proper and allowable utilization of the rangelands in range management projects is the important scientific and technical measure of the range management in Iran. Range management projects as improvement - restoration and reclamation guidelines have particular importance in the Natural Resources Organization of Iran. On the other hand, erosion and soil loss and sediment production has become today one of the main problems in the human environment. Restoration of vegetation and its effects on reduction of erosion have been studied by Li, 2006, Zhou, et al. 2008, Zhanga et al. 2004, Abdelkrima, et al. 2013. The Goal of the improvement - restoration operations in natural ecosystems is recovery plant composition for more protection of water and soil and decrease in soil erosion. Therefore, soil management for optimal utilization is essential to reduce its degradation. Mapping the rate of erosion and sediment yield and regional prioritization are effective steps for management, protection and utilization of the soil. The purpose of this study is to estimate the amount of soil erosion and to simulate the effects of improvement and restoration of soil loss in the Lar area, Mazandaran.   
Material and methods
In the present research, Revised Universal Soil Loss Equation (RUSLE) was applied using GIS. The parameters of this model are consisted of R, K, LS, C and P. These are calculated with rainfall data, soil maps, digital elevation models and remote sensing techniques. Suitable location of improvement - restoration projects was determined based on maps of slope, elevation, vegetation, pedology and rangeland condition. Then, by combining these maps and applying basic principles of range management, we offered rangeland management model for improving or maintaining the optimal status. Then, erosion risk map was prepared using revised universal soil loss equation. Finally, changes in erosion after restoration and reclamation operations were predicted using this model in GIS.
Results and discussion
The results showed that the mean values of the parameters R, K, LS, C and P for study area was 67.143, 18.0, 52.5, 37.0 and 1, respectively. Average of yearly sediment load was estimated about 51 tons ha-1 year-1. Allocation of the areas to restoration and reclamation operations is including 378 ha for seeding, 246 ha for inter seeding and 176 ha for planting pile. Also cultivation on contour lines with seeding and strip cultivation with inter seeding was suggested and simulated. Simulation results after the suggested operations showed that the P and C factors will be 0.8 and 0.31, respectively. Therefore, erosion value will be reduced to 34 tons ha-1 year-1 and following that it is equivalent to 34% reduction. RUSLE model was used by many researchers and its performance was confirmed according to the results of this research. The results showed that the areas with low slope had more sediment rate than other areas. Average of yearly sediment load was ranged from zero to 595 tons ha-1 year-1in study area. Soil erosion was more in eastern south parts of the watershed. This is similar to the results of Asadi, et al. 2010. Restoration and reclamation operations have changed C factor that can cause reduction of erosion. After simulation, these operations had reduced erosion from zero to 464 tons ha-1 year-1. This is also similar to the results of Ligdi and Morgan, 1995, Terranva, et al. 2009, and Stevens, et al. 2009.         
The reduction in P and C factors and consequently decrease in erosion have indicated the importance of improvement - restoration projects within rangelands. . It has been revealed that combination of GIS with sediment and erosion models can be an effective method to determine spatial distribution of sediment and erosion. The suggested improvement – restoration operations in addition to protection of water and soil have caused an increase in forage production and as a result increased livestock products and household income.


Main Subjects

آذرنیوند، ح.؛ نامجویان، ر.؛ ارزانی، ح.؛ جعفری، م. و زارع چاهوکی، م. (1386). مکان‌یابی برنامه‏های اصلاح و احیای مراتع با استفاده از GIS و مقایسة آن با پروژه‏های پیشنهادی در طرح‏های مرتع‌داری مراتع منطقة لار، مجلة علمی‌- پژوهشیمرتع، 2: 159 ـ 169.
انصاری، ن. (1386). روشهایاحیایآبخیزباپوششگیاهی، تهران: انتشارات مؤسسة آموزش عالی علمی‌- کاربردی جهاد کشاورزی.
اسدی، ح.؛ وظیفه‌دوست، م.؛ موسوی، س.ع. و هنرمند، م. (1389). ارزیابی و پهنه‏بندی خطر فرسایش خاک با استفاده از معادلة جهانی تلفات خاک اصلاح‌شده، سامانة اطلاعات جغرافیایی و سنجش از دور در حوضة آبخیز ناورود، ارائة دستاوردهای پژوهشی شرکت سهامی آب منطقه‏ای گیلان، رشت، شرکت سهامی آب منطقه‏ای.
پورحسین ثابت، س. (1391). شبیه‏سازی اثرات تغییر کاربری اراضی بر هدررفت خاک با استفاده از مدل RUSLE (مطالعة موردی حوضة آبخیز دارابکلا)، پایان‏نامة کارشناسی‏ارشد آبخیزداری، دانشکدة منابع طبیعی ساری، دانشگاه علوم کشاورزی و منابع طبیعی.
جنگجو، م. (1388). اصلاحوتوسعةمراتع، انتشارات جهاد دانشگاهی مشهد.
دهقان، ف. (1389). تأثیر عملیات احیایی بیولوژیک بر پوشش گیاهی و خصوصیات خاک (مطالعة موردی زیرحوضة رودخانة کبیر سوادکوه)، پایان‏نامة کارشناسی‏ارشد مرتع‏داری، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
رفاهی، ح. (1379). فرسایشآبیوکنترلآن، انتشارات دانشگاه تهران.
فتحی، ق.ع.؛ محمدی، ع.؛ اکبری، ن. و عنایتی. (1389). تأثیر طرح‏های مرتع‌داری بر کنترل خاک حوضة آبخیز کویر میقان، چکیدةاولینهمایشمقابلهبابیابانزایی، اراک.
محمدی، م.؛ فلاح، م.؛ کاویان، ع.؛ غلامی، ل. و امیدوار، ا. (1395). کاربرد مدل RUSLE در تعیین توزیع مکانی خطر هدررفت خاک، اکوهیدرولوژی، 3 (4): 645-658.
واعظی، ع.؛ بهرامی، ح.؛ صادقی، س.ح. و مهدیان، م.ح. (1389) بررسی عوامل مؤثر بر فرسایش‌پذیری خاک در خاک‌های آهکی، مجلةعلومکشاورزیومنابعطبیعیگرگان، 14: 55 ـ 65.
Abdelkrima, B.; Hafidhab, B.; Okkachac, H.; Khalladie, M. and Abdelkrimf, S. (2013). Rehabilitation of the steppe in the region of Naama (western Algeria), Energy Procedia, 36: 349-357.
Ansari, N. (2007). Watershed restoration techniques using vegetation, Institute of Higher Education Science – Applied of Keshavarzi Jahad press, Tehran.
Asadi, H.; Vazife doost, M.; Mosavi, S.A. and Honarmand, M. (2010). Assessing and mapping the risk of soil erosion using RUSLE, GIS and RS in Navrood watershed, Research report of Company of Regional Water, Rasht, Guilan.
Azarnivand, H.; Namjoyan, R.; Arzani, H.; Jafari, M. and Zare Chahouki, M.A. (2007). Localization of range improvement plans using GIS and comparing with suggested projects of range management plans in Lar region, Iranian J. Rangeland, 2: 159-169.
Chong-Fa, C.; Qing-Xue, X.; Tian-Wei, W.; Zhao-Xia, L.; Zhi-Hua, S. and Rong-Jie1, F. (2013).Responses of Runoff and Soil Erosion to Vegetation Removal and Tillage on Steep Lands, Catena, 23: 532-541.
Dehghan, F. (2010). The impact of biological recovery operations on vegetation and soil properties (case study: Kabir sub watershed of Savadkooh), Ms.c thesis in Range management, Sari Agricultural and Natural Recourses Sciences University.
Fathi, Gh.; Mohammadi, A.; Akbari, A. and Enayati, N. (2010). Effect of projects range management of soil control in Kavir Mighan watershed, Firth conference of Combat Desertification, Arak.
Ferro, V. and Porto, P. (2000). Sediment delivery distributed (SEDD) model, Journal of Hydrology, 5: 18-41.
Fiona, P.M.; Saskia, M.V. and Storoosijder, L. (2010). A tool for rapid assessment of erosion risk to support decision-making and policy development at the Ngenge watershed in Uganla, Geoderam, 160: 165-174.
Jangjoo, M. (2009). Reform and development of rangelands, Daneshgahi Jahad press of Mashhad.
Jianlao, L.; Xinxiao, U.; Xuexia, Z.; Manliang, Z. and Yuanyuan, Z. (2006). Effects of vegetation cover and precipitation on the process of sediment produced by erosion in a small watershed of loess region, Acta Ecologica Sinica, 26: 1-8.
Jones, D.S.; Kowalski, D.G. and Robert, B.S. (2008). Calculating Revised Universal Soil Loss Equation (RUSLE) Estimates on Department of Defense Lands, Catena, 8: 480-523.
Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed, Ozean Journal of Applied Sciences, 3: 1123-1129.
Lafen, J.M. and Roose, E.J. (1998). Method logistics for assessment of soil degradation truss to water erosion, In Law: Balum. W.E. and Valenentine, c. soil degrading, CRC press, Bo Ca Raton, 320.
Lai, R.; Bium, W.H.; Valentie, C. and Stewart, B.A. (1998). Methods for assessment of soil degradation, Advances in Soil Sci, 558p.
Li, Z.F. (2006). Effect of vegetation changes on soil erosion on the loess plateau, Soil Science Society of China, 16: 420-427.
Ligdi E.E. and Morgan R.P. (1995). Contour grass strips: a laboratory simulation of their role in soil erosion control. 1221. Soil Technol, 2: 102-112.
Nijel, R. and Rughooputh, S. (2010). Mapping of monthly soil erosion risk of Mainsnd Mauritius and its aggregation with delineated basins, Geomorphology, 114: 101-114.
Park, S.; Jin, C.; Jeon, S. and Jung, H.C. (2011). Soil Erosion Risk in Korean Watersheds, Assessed Using the Universal Soil Loss Equation, Journal of Hydrology, 399: 263-273.
Kavian, A.; Hoseinpoor Sabet, S.; Solaimani, K. and Jafari, B. (2017). Simulating the effects of land use changes on soil erosion using RUSLE model, Geocarto International, 32 (1): 97–111.
Prasannakumar, V., Vijith, H., Abinod, S., Geetha, N. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation
Poor Hosein Sabet, S. (2012). Simulation of land use changes on soil loss using RUSLE model (case study: Darabkola watershed), Watershed management Ms.c thesis in Sari agricultural and natural recourses.
Refahi, H. (2000). Water erosion and control, Tehran university press.
Stevens C.J.; Quinton J.N.; Bailey A.P.; Deasy, C.; Silgram, M. and Jackson D.R. (2009). The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss, Soil and Tillage Research, Soil and Tillage Research, 106(1): 145-151.
Terranva, O.;  Antronice, R.; Coscarelli, R. and Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS. An application model for Calabria (southern Italy), Geomorphology, 112: 228-245.
Tripathi, M.P.; Panda, R.K. and Raghuwanshi, N.S. (2003). Identification and prioritization of critical sub watersheds for soil conservation management using the SWAT model, Biosystems Engineering, 85(3): 365-379.
Vaezi, A.; Bahrami, H.; Sadeghi, H.R. and Mahdian, M.H. (2010). Investigating factors affecting on the erosion of calcareous soils, Iranian J. agricultural and natural resources sciences, Gorgan, 14: 55-65.
Wang, G.G.; Gartner, X.; Liu, H. and Anderson, A. (2001). Uncertainty assessment of soil erodibility factor for revised universal soil loss equation, Catena, 46: 1-14.
Wischmeier, W.H.; Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture handbook 537. Washington (DC): US, Department of Agriculture; 58p
Zangh, X.; Wu, B.; Ling, F.; Zeng, Y.; Yan, N. and Youan, C. (2010). Identification of priority areas for controlling soil erosion, Catena, 83: 76-86.
Zhanga, B.; Yanga, Y. and Zepp, H. (2004). Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China, Catena, 57: 77-90.
Zhou, A.P.; Luukkanen, B.O.; Tokola, C.D.T. and Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed, Catena, 75: 319-325.
Volume 49, Issue 1
April 2017
Pages 55-69
  • Receive Date: 11 May 2015
  • Revise Date: 09 May 2016
  • Accept Date: 27 October 2016
  • First Publish Date: 21 March 2017