صنیعی آباده، م.؛ محمودی، س. و طاهرپرور، م. (1393). دادهکاوی کاربردی، ویراست دوم، تهران: نیاز دانش.
رحمانی، ن.؛ شاهدی، ک. و میریعقوبزاده، م. (۱۳۹۰). ارزیابی شاخصهای پوشش گیاهی مورد استفاده در سنجش از دور (مطالعة موردی: حوضة هریسک)، هجدهمین همایش ژئوماتیک، تهران، دانشگاه علم و صنعت ایران.
Camdevyren, H.; Demyr, N.; Kanik, A. and Keskyn, S. (2005). Use of principal componentscores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs, Ecological Modelling, 181(4): 581-589.
Choi, S.U. and Lee, J. (2015). Assessment of total sediment load in rivers using lateral distribution method, Journal of Hydro-environment Research, 9(3): 381-387.
Collins, A.L., Walling, D.E. (2004). Documenting catchment suspended sediment sources: problems, approaches and prospects, Prog Phys Geogr, 28:159-196.
Cortes, C. and Vapnik, V. (1995). Support-vector network, Mach. Learn, 20: 273-297.
Cobaner, M.; Unal, B. and Kisi, O. (2009). Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data, Journal of hydrology, 367(1): 52-61.
Da Silva, A.G.A.; Amaro, V.E.; Stattegger, K.; Schwarzer, K.; Vital, H. and Heise, B. (2015). Spectral calibration of CBERS 2B multispectral satellite images to assess suspended sediment concentration, ISPRS Journal of Photogrammetry and Remote Sensing, 104: 53-62.
Hashimoto, K. and Oki, K. (2013). Estimation of discharges at river mouth with MODIS image, International Journal of Applied Earth Observation and Geoinformation, 21: 276-281.
Huang, H.L. and Chang, F.L. (2007). ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90(2): 516-528.
Ho, S.-Y.; Shu, L.-S. and Chen, J.-H. (2004). Intelligent evolutionary algorithms for large parameter optimization problems, IEEE Trans. Evolutionary Comput, 8(6): 522-541.
Kamusoko, C. and Aniya, M. (2007). Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe, Land degradation & development, 18(2): 221-233.
Kowalczyk, P. and Logan, K. (1989). TM processing for routine use in mineral exploration, in Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, Vol. I, Environmental Research Institute of Michigan, Ann Arbor, Mich., pp. 323-329.
Kumar, A.; Equeenuddin, S.M.; Mishra, D.R. and Acharya, B.C. (2016). Remote monitoring of sediment dynamics in a coastal lagoon: Long-term spatio-temporal variability of suspended sediment in Chilika, Estuarine, Coastal and Shelf Science, 170: 155-172.
Kisi, O. (2012). Modeling discharge-suspended sediment relationship using least square support vector machine, Journal of hydrology, 456: 110-120.
Lafdani, E.K.; Nia, A.M. and Ahmadi, A. (2013). Daily suspended sediment load prediction using artificial neural networks and support vector machines, Journal of Hydrology, 478: 50-62.
Liu, Q.J.; Shi, Z.H.; Fang, N.F.; Zhu, H.D. and Ai, L. (2013). Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach, Geomorphology, 186: 181-190.
Montanher, O.C.; Novo, E.M.; Barbosa, C.C.; Rennó, C.D. and Silva, T.S. (2014). Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. International Journal of Applied Earth Observation and Geoinformation, 29: 67-77.
Nechad, B.; Ruddick, K.G. and Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, Remote Sensing of Environment, 114(4): 854-866.
Ouillon S.; Douillet, P. and Andrefouet, S. (2004). Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia, Coral Reefs, 23: 109-122.
Park, E. and Latrubesse, E.M. (2014). Modeling suspended sediment distribution patterns of the Amazon River using MODIS data, Remote Sensing of Environment, 147: 232-242.
Rahmani, N.; Shahedi, K. and Miryaghoub zadeh, M. (1390). Assessment vegetation indexes used in remote sensing (case study of the basin Harisak), Eighteenth Geomatics, Tehran, Iran University of Science and Technology (In Persion).
Rajaee, T.; Nourani, V.; Zounemat-Kermani, M. and Kisi, O. (2010). River suspended sediment load prediction: Application of ANN and wavelet conjunction model, Journal of Hydrologic Engineering, 16(8): 613-627.
Rajaee, T. (2011). Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers, Science of the total environment, 409(15): 2917-2928.
Rencz, A.N. (1999). Remote sensing for the earth sciences: manual of remote sensing, Vol. 3 (No. Ed. 3). John Wiley and sons, p 409.
Rouse, J.W.; Haas, R.H.; Schell, J.A. and Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351 I: 309-317.
Sani Abade, M.; Mahmoudi, S. and Taherparvar, D. (1393). Data mining applications (second edition), Publishing need knowledge, Tehran. (In Persion).
Schiebe, F.R; Harrington, Jr J.A. and Ritchie, J.C. (1992). Remote sensing of suspended sediments: the Lake Chicot, Arkansas project, Int J Remote Sens, 13: 1487-509.
Verstraeten, G. and Poesen, J. (2001). Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate, Geomorphology, 40(1): 123-144.
Wang, J.J. and Lu, X.X. (2010). Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China, Science of the Total Environment, 408(5): 1131-1138.
Wang, Y.G.; Wang, S.S. and Dunlop, J. (2015). Statistical modelling and power analysis for detecting trends in total suspended sediment loads, Journal of Hydrology, 520: 439-447.
Zhang, M.; Dong, Q.; Cui, T.; Xue, C. and Zhang, S. (2014). Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery, Remote Sensing of Environment, 146: 136-147.
Zhu, Y.M.; Lu, X.X. and Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China, Geomorphology, 84(1): 111-125.
Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J. and Ramezani-Charmahineh, A. (2016). Evaluation of data driven models for river suspended sediment concentration modeling, Journal of Hydrology, 535: 457-472.