Source Identification of the elements in PM10 Aerosols, Case Study: Kermanshah City

Document Type : Full length article


1 MSc in Environmental Engineering, Faculty of Agricultural and Natural Resources, University of Tehran

2 Professor of Agricultural and Natural Resources, University of Tehran


Particulate matters are particles that have placed as dispersed particles, in solid or liquid, in gaseous intermediators. Recently, aerosols as one of the air pollutants, from natural or anthropogenic sources, have received the attention of many researchers due to the roles they play in global climate change and the environmental and health problems. They can scatter or absorb solar radiation and thermal radiation emitted from the earth surface. The aerosols as condensation nuclei of cloud droplets can also affect cloud formation and precipitation. Numerical studies have performed particulate matter (PM10) and their source identification.
Source identification of trace elements in PM2.5 in Mira Loma, in southern California, was performed using factor analysis, the backward air mass trajectory analysis, enrichment factor calculation and the Al/Zn ratio. Al is a major constituent in the earth crust but it is not in vehicle emissions. This study suggests that the Al/Zn ratio can be used to understand the dominance of soil-related sources. The low Al/Zn ratio shows that dominant sources are vehicle emissions.
The purpose of this research is source identification of the main and trace elements of PM10 aerosols and also, investigation of effective areas in production of the aerosols (PM10) using satellite images in Kermanshah. In this research, the exploratory factor analysis has been used to identify natural and anthropogenic sources of the elements in PM10 aerosols.
Materials and Methods  
In this research, sampling of aerosols has been performed by aerosol sampler. Then, the concentrations of the eleven elements (K,Al, Na, Ca, Cu, Ni, Pb, Mn, Fe, Mg, V) have been detected by ICP-OES. 
In this study, the exploratory factor analysis has been used to identify potential sources of major and trace elements in aerosols. In this method, variables are placed in the factors so that the percentage of variance decreases from first factor to next factors. Hence, the variables in the first factor are most effective.
In this study, the days that particulate matter concentration was higher than permissible level, we have determined daily information of particulate matter concentration at Air Quality Monitoring Station in Kermanshah. Then, effective areas in production of aerosols (PM10) have been investigated using satellite images during February to July 2010.  
Results and discussion  
In the factor analysis, the variables (elements) with the factor-loading less than 0.5 are not listed in the table. The total number of factors has been selected so that the cumulative percentage of the variance explained by all the selected factors was more than 77%. Only the factors are selected that had an eigenvalue greater than one. The last column shows the values of the communalities which explains the amount of common variance for each of the variables (elements) with the four factors.
Table 3.  Factor- Loading for trace and main elements in the Kermanshah atmosphere


Component 1(soil-related emissions)

Component 2(vehicle-related emissions)

Component 3(vehicle exhaust)

Component  4(industry-oil burning emissions)










































































% variance






Cumulative % variance






Factor analysis identified four possible sources: soil-related emissions, vehicle-related emissions, vehicle exhaust, oil combustion and industry (table 3). These four factors account for an average of 77.047% of the total variance. According to this table, the first factor is heavily loaded (factor loading >0.50) for element of K, Ca, Fe, Mg, Na, Mn and Al which are soil-related elements. This factor may be related to the sources such as crust material (mineral dust), paved and unpaved roads, construction, and etc. This factor accounts for the largest part of the total variance (36.1%). This means that sources of soil-related emissions are likely the major contributors to the trace and main elements in PM10 in Kermanshah. The second factor (consisting of Cu and Pb) is likely associated with brake pads. According to the San Francisco Bay Study, the brake pads are the largest source of discharge of Cu to the Bay.
Copper is the most abundant element (up to 20%) in composition of brake pads, followed by zinc (up to 18%) and lead (up to 12%). Thus, the second factor is likely associated with vehicle-related emissions. The third factor is highly loaded for element of Fe and V which are typical of vehicle exhausts. Besides, Zn and Fe are as a possible indicator of vehicle exhaust. Fe is usually emitted from the wearing of steel parts of vehicles such as cylinders. In summary, the second factor and third factor are likely related to vehicle-related emissions. The fourth factor consists of nickel and vanadium which are mainly derived from industry and oil. Based on 33 scientific researches in Europe, source of iron, zinc, copper and lead are traffic and vehicle exhaust. The trend of their variations is dependent on the volume of the traffic emissions. Also, according to 24 scientific studies, aluminum, calcium, potassium and iron are derived from mineral dust. Based on 21 studies, the sources of vanadium and nickel have been expressed by the industry and oil burning. Obtained results of investigation of source identification of dusts using satellite images indicated that the most frequent dust (particulate matter) is in the northwestern regions between the northwest and northeast Iraq, then the east of Syria and northwest Saudi Arabia.
The crustal elements were the major contributor to the main and trace elements in PM10 in the Kermanshah atmosphere. According to the satellite images, it can be stated that Iraq and its neighboring regions have played important role in production of aerosols (PM10). 


Main Subjects

جمشیدی، ا.؛ کریم‏زاده، ک. و رایگان شیرازی، ع. (1385). بررسی میزان آلودگی ذرات‏ معلق در هوای شهر گچساران در سال 1384، مجلة ارمغان دانش، 12(2): 89ـ97.
حیدری، م.ط. (1387). طوفان‏های گرد و غبار مهمان ناخوانده و حوادثی نامنتظره و زیان‏بار، فصل‏نامة هواشناسی استان کرمانشاه، 7: 4ـ13.
خوش‏اخلاق، ف.؛ نجفی، م.س.؛ زمان‏زاده، م.؛ شیرازی، م.ح. و صمدی، م. (1392). بررسی ترکیبات بار گرد و غبار در غرب و جنوب‏ غرب ایران، جغرافیا و مخاطرات‏ محیطی، 6: 17ـ36.
دبیری، م. (1392). آلودگی محیط ‏زیست (هوا، آب، خاک، صوت)، تهران: اتحاد.
ذوالفقاری، ح. و عابدزاده، ح. (1384). تحلیل سینوپتیک سیستم‏های گرد و غبار در غرب ایران، مجلة جغرافیاوتوسعه، 174ـ188.
زارع ‏چاهوکی، م.ع. (1393). تجزیه و تحلیل داده‏ها در پژوهش‏های منابع طبیعی با نرم‏افزار SPSS، تهران: انتشارات جهاد دانشگاهی واحد تهران.
زورآوند، ع. و شهبازی، ف. (1387). تحلیل سینوپتیکی جو در استان کرمانشاه، فصل‏نامة هواشناسی، 13: 7ـ9.
عرفان‏منش، م. و افیونی، م. (1381). آلودگی محیط ‏زیست (آب، خاک، و هوا)، اصفهان: انتشارات ارکان.
عطایی، ه. و احمدی، ف. (1389). بررسی گرد و غبار به ‏عنوان یکی از معضلات زیست‏محیطی جهان اسلام (مطالعة موردی: استان خوزستان)، مجموعهمقالاتچهارمینکنگرةبین‏المللیجغرافیدانانجهاناسلام، ایران، زاهدان، ص1ـ19.
قاسمی، م. (1388). بررسی وضعیت گرد و غبار استان کرمانشاه در سال 1388، فصل‏نامة هواشناسی استان کرمانشاه، 13: 4ـ6.
لیلی، م.؛ ندافی، ک.؛ یونسیان، م.؛ مصداقی‏نیا، ع. و نظم‏آرا، ش. (1388). غلظت ذرات‏ معلق و شاخص کیفیت هوا (AQI) در محدودة مرکزی شهر تهران، مجلة دانشکدةبهداشت وانستیتوتحقیقاتبهداشتی، ٧(1): 57ـ67.
ندافی،ک.؛ احرام‏پوش، م.؛ جعفری، و. و یونسیان، م. (1387). بررسی کل ذرات ‏معلق و ترکیب مواد تشکیل‏دهندة آن در منطقة مرکزی شهر یزد، مجلة دانشگاه علوم پزشکی و خدمات بهداشتی- درمانی شهید صدوقی یزد، 16(4): 21ـ25.
Ataei, H. and Ahmadi, F. (2010). Dust one of the environmental problems in Islamic world (Case study: Khozestan Province), In: Proceedings of the Fourth International Congress of Islamic World Geographers, Iran, Zahedan, pp. 14-16.
Bhanarkar, A.D.; Rao, P.S.; Gajghate, D.G. and Nema, P. (2005). Inventory of SO2, PM and toxic metals emissions from industrial sources in Greater Mumbai, India, Atmospheric Environment, 39: 3851-3864.
Cao, J.; Shen, Zh.; Chow, C.j.; Qi, g. and Watson, G.j. (2009). Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China, Particuolog, 7: 161-168.
Dabiri, M. (1996). Environmental pollution (air - water - soil - noise), Etehad Publications, Iran.
Engberg, C.C. (1995). The regulation and manufacture of brake pads: the feasibility of reformulation to reduce the copper load to the San Francisco Bay, /ref /02/01/393.pdf.
Erfan-Manesh, M. and Afuni, M. (2002). Environmental pollutions (water, soil and air), Arkan Press, Tehran.
Ghassemi, M. (2009). Investigation of dust in Kermanshah Province, Meteorology of Kermanshah, 13: 4-6.
Haideri, M.T. (2009). Uninvited guests and harmful phenomena, Meteorology of Kermanshah, 7: 4-13.
Han, Y.M.; Cao, J.J.; Jin, Z.D. and ZS, AN. (2009). Elemental composition of aerosols in Daihai, a rural area in the front Boundary of the Summer Asian Monsoon, Atmospheric Research, 92: 229-235.
Jamshidi, A.; Karimzadeh, K.; Raiganshirazi, A. (2006). Investigation of suspended particles pollution in Gachsaran air, Armaghan of Danesh, 12(2): 89-97.
Khoshakhlagh, F.; Najafi, M.S.; Zamanzadeh, S.M.; Shirazi, M.H.; Samadi, M.  (2013). The study of dust composition in the west and southwest of  Iran, Geography and Environmental Hazards, 6: 17-36.
Koulouri, E.; Saarikoski, S.; Theodosi, C.; Markaki, Z.; Gerasopoulos, E.; Kouvarakis, G.; Ma¨kela¨, T.; Hillamo, R. and Mihalopoulos, N. (2008). Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean, Atmospheric Environment, 42: 6542-6550.
Lili, M.; Naddafi, K.; Yonsyan, M.; Mesdaghinia, A. and Nazmara, Sh. (2009). Concentration of aerosols and air quality index (AQI) in the central area of Tehran, Faculty of Health and Institute of Health Researeches, 7(1): 57-67.
Mohammedan Behbahani, A. (2006). Investigation and determination of movement of the fluent sands on the roads of desert and its control (Case Study: Yazd - Meibod Road), M.A. Thesis, Sadat Fiznia, Faculty of Natural Resources, University of Tehran, Iran.
Na, K. and Cocker, D.R. (2009). Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California, Atmospheric Research, doi:10.1016/j. atmosres.2009.03.012.
Naddafi, K.; Ahrampush, M.H.; Jafari, V. and Yonesyan, M. (2008). Investigation of total suspended particles and its ingredients in the central area of Yazd, University of Medical Sciences – Health Services of Sadoughi,s martyr of Yazd, 16(4): 21-25.
Norbeck, J.M.; Durbin, T.D. and Truex, T.J. (1998). Measurement of primary particulate mattermiss from light-duty motor vehicles, Center for Environmental Research and Technology, University of California, Riverside, CA. Final Report, CRC Project No, E-24-2.
Rajabi, M.R. (2003). Analysis of erosive winds in the area of Isfahan, M.S. Thesis, Faculty of Natural Resources, Industrial University of Isfahan, Iran.
Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; H.Prevot, A.S.; Hueglin, C.; Bloemen, H.; Wahlin, P.; Vecchi, R.; Miranda, A.I.; Kasper-Giebl, A.; Maenhaut, W. and Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: a review of methods and results, Aerosol Science, 39: 827-849.
Zare Chahouki, M.A. (2010). Analysis of data in the researches of natural resources using the SPSS software, Press of Jehad of Daneshgahi of Tehran, Iran.
Zolfaghari, H. and Abedzadeh, H. (2005). Synoptic analysis of dust systems in the West, Geography and Development, Fall and Winter, pp. 174-188.
Zouravand, A.M. and Shabazi, F. (2010). Synoptic analysis of atmosphere in Kermanshah Province, Meteorology of Kermanshah, 13: 7-9.
Zoljoodi, M.; Didevarasl, A.and Montazerzohor, Z. (2013). Application of the dust simulation models in the Middle East, and dust-dispersion toward the western/southwestern Iran (case study:22-26 june 2010), Natural Science, 5(7): 818-831.