Prospect of Possible Changes in the Frequency of Frost Days in Iran Using General Atmospheric Circulation Models

Document Type : Full length article

Authors

1 Professor of Climatology, Department of Physical Geography, Faculty of Geography and Environmental Planning, Tabriz University, Tabriz, Iran

2 Assistant Professor of Climatology, Department of Physical Geography, Faculty of Geography and Environmental Planning, Sistan and Baluchistan University, Zahedan, Iran

3 PhD candidate in Climatology, Department of Physical Geography, Faculty of Geography and Environmental Planning, Tabriz University, Tabriz, Iran

Abstract

Introduction
Global warming and climate change are one of the most important bioenvironmental challenges in recent decades. Winter ecological processes are important drivers of vegetation and ecosystem functioning in temperate ecosystems. There, winter conditions are subject to the effects of rapid climate change. The potential loss of a longer-lasting snow covers with implications to other plant related climate parameters and overwintering strategies make the temperate zone particularly vulnerable to winter climate change. One of the indices suggested in analysis of climate changes and global warming is the frequency of frost days. Frost is an atmospheric phenomenon affecting agricultural activities in many parts of the Earth. The highest increase in average temperature is occurred in minimum temperature. Modeling and scientific research indicate that global warming and rise in night temperature have reduced the number of frost days in many parts of the globe.
 
Materials and Methods
The data of this study consisted of two groups of observational data and simulated data. The observational data are the daily minimum temperature values from 44 synoptic stations in various regions of Iran. The stations have the full data of thirty years (1981-2010) received from Iran Meteorological Organization.
The simulated data of the future period are generated using the downscaling output of general circulation models of atmosphere. One of the most famous models is stochastic weather generator, LARS-WG. The model is used to produce values of precipitation, radiation, and maximum and minimum daily temperature at one station under the present and future climate conditions. Among 15 LARS Models, two global climate models were selected; HadCM3 and GFCM21 Models. The data simulated by the two models for the periods 2045-2065 and 2080-2099 were performed and produced under the three emission scenarios AB, A2 and B1.
 
Results and discussion
The average frequency of frost days in the selected stations in the period 1981-2010 is 62 days per year. The dispersion of the number of frost days in the area is highly different. The range of frost days (0-134) per year in the studied stations is different. The highest frequency of the frost days is associated with Hamadan, Ardabil, Shahrekurd, Zanjan, Uremia and Khoy with a frequency higher than 100 days per year. The most frequent frost days were related to Hamadan with an average of 134 days per year. Four coastal stations of southern Bushehr, Bandar Abbas, Bandar Lengeh and Chah Bahar lack frost and Ahvaz and Abadan and Iranshahr stations with an annual average of less than one day. They have the lowest incidence of frost.
Results have indicated that in the period (2046-2065) under the GFCM21 model and the A1B, A2 and B1 scenarios, the average annual frost days in Iran was 37, 46 and 41 days, respectively. Based on the HADCM3 model and the scenarios, the average annual frost days are 41, 42 and 46 days. In both models, in three scenarios greatest reduction occurred in Hamedan station. In the stations of Khorram Abad, Kermanshah and Shahrekord, Shahrood, Yazd and Fassa a large decrease was seen. In the observation period (1981-2010), five southern coastal stations were free of frost while in this period the stations that have a frequency less than 10 day, will be frost-free.
In the period (2099-2081) based on the GFCM21 model and scenarios A1B, A2, and B1, the annual average number of frost days in Iran is estimated to be 31, 29 and 43 days. Based on the HADCM3 model, the annual average number of frost days is 33, 28 and 38 days.
 
Conclusion
In this study, we have used weather data from 44 synoptic stations of Iran, during the period 1981-2010. We have also applied the two models of the general circulation of atmosphere, HADCM3 and GFCM21, for the periods 2046-2065 and 2080-2099 under three emission scenarios of A1B, A2 and B1. Using these data and the outputs of the models, we have analyzed the effects of global warming on changes in the frequency of frost days in Iran. Both the models performed with the three scenarios have indicated a reduction in the frequency of frost days in both periods. The slope changes of the frequency of frost days in the period (1981-2099) under these scenarios have revealed the reduction of -5.5, -5.1 and -3.6 days per decade. Overall results showed that in all the stations, the number of frost days have declined in the coming decades. The rate of decline in the mid-northern and mountainous areas has the highest frequency of occurrence of frost more than that of the mid-South and beaches.

Keywords

Main Subjects


احمدی، م. و زهرایی، ا. (1393). شبیه‌سازی اثرات تغییر اقلیم بر یخبندان‌های زاهدان با استفاده از مدل‌های سه‌بُعدی گردش عمومی جو، پژوهش‏های دانش زمین، 5(20): 29ـ44.
اسدی، ا. و حیدری، ع. (1390). تحلیل تغییرات سری‌های دما و بارش شیراز طی دورة 1951ـ2005، مجلة جغرافیا و برنامه‌ریزی محیطی، 22(31): 137ـ152.
اسماعیلی، ر.؛ نوخندان، م.ح. و فلاح قالهری، غ. (1389). ارزیابی تغییرات طول دورة رشد و یخبندان ناشی از نوسانات اقلیمی (مطالعة موردی: خراسان رضوی)، پژوهشهای جغرافیای طبیعی، 73: 69ـ82.
بهیار، م.؛ خیراندیش، م. و زمانیان، م. (1392). بررسی تأثیرات تغییر اقلیم بر شمارة روز اولین یخبندان پاییزه و آخرین یخبندان بهاره در ایران با استفاده از ریزمقیاس‌نماییSDSM ، نشریة پژوهشهای اقلیمشناسی، 4(15 و 16): 117ـ128.
ربانی، ف. و کرمی، ف. (1388). بررسی روند تعداد روزهای یخبندان در استان خراسان شمالی، فصل‏نامة جغرافیای طبیعی، 1(4): 85ـ94.
رضایی، پ. و عابد، ح. (1389). بررسی روند تغییرات دمای حداقل در ایستگاه همدیدی شهر رشت با تأکید بر دورة یخبندان، فصل‌نامة جغرافیا و مطالعات محیطی، 2(4): 39ـ48.
صداقت‌کردار، ع. و رحیم‌زاده، ف. (1386). تغییرات طول دورة رشد گیاهی در نیمة دوم قرن بیستم در کشور، فصل‌نامة پژوهش و سازندگی، 75: 182ـ193.
علیجانی، ب.؛ محمودی، پ.؛ سلیقه، م. و ریگی چاهی، ا. (1390). بررسی تغییرات کمینه‌ها و بیشینه‌های سالانة دما در ایران، فصل‌نامة تحقیقات جغرافیایی، 23(3): 101ـ122.
 قربانی، خ. و  ولی‌زاده، ا. (1393). بررسی تاریخ یخبندان‌ها و سرماهای مؤثر در کشاورزی تحت تأثیر تغییر اقلیم (مطالعة موردی: مشهد، تبریز، و قزوین)، پژوهشهای حفاظت آب و خاک (علوم کشاورزی و منابع طبیعی)، 21(4): 197ـ214.
محمدی، ح.؛ عزیزی، ق.؛ خوش‌اخلاق، ف. و رنجبر، ف. (1394). روند روزهای یخبندان در ایران (1982ـ2012)، جغرافیا (فصل‌نامة علمی‌- پژوهشی و بین‌المللی انجمن جغرافیای ایران)، دورة جدید، 13(46): 119ـ136.
مسعودیان، ا. و دارند، م. (1394). بررسی روند تعداد روزهای یخبندان ایران، جغرافیا و توسعه، 39: 49ـ60.
مسعودیان، ا. (1390). آب و هوای ایران، مشهد: انتشارات شریعة توس.
محمودی، پ.؛ خسروی، م.؛ مسعودیان، ا. و علیجانی، ب. (1391). پهنه‏بندی و پایش یخبندان‏های ایران، پایان‏نامة دکتری اقلیم‏شناسی، دانشکدة جغرافیا و برنامه‏ریزی محیطی، دانشگاه سیستان و بلوچستان، مهر 1391.
هاشمی عنا، ک.ک؛ خسروی، م. و طاوسی، ت. (1394). اثر تغییر اقلیم بر طول دوره‏های خشک در ایران، پایان‌نامة دکتری در رشتة جغرافیای طبیعی گرایش اقلیم‌شناسی در برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان.
Ahmadi, M. and Zahraei, R. (2014). Simulate the effects of climate change on frost Zahedan with three-dimensional models of general circulation of the atmosphere, Earth science research, 20: 29-44.
Alijani, B.; Mahmoud, P.; Salighe, M. and Rigi chahi, A. (2011). Determine the minimum and maximum annual changes of temperature in Iran, Geographical Research Quarterly, 23(3): 101-122.
Anandhi, A.; Zion, M.S.; Gowda, P.H.; Pierson, D.C.; Lounsbury, D. and Frei, A. (2013). Past and future changes in frost day indices in Catskill Mountain region of New York, Hydrological Processes, 27(21): 3094-3104.
Asadi, A. and Heydari, A. (2011). Analysis of changes in temperature and precipitation series of Shiraz during the period -2005-1951, Geography and Environmental Planning Journal, 22, Title 41(1): 137-152.
Auer, I.; Matulla, C.; Böhm, R.; Ungersböck, M.; Maugeri, M.; Nanni, T. and Pastorelli, R. (2005). Sensitivity of frost occurrence to temperature variability in the European Alps, International journal of climatology, 25(13): 1749-1766.
Behyar, M.; Kheyrandish, M. and Zamanian, d. (2013). Examine the impact of climate change on the number of days the first frosts of autumn and late spring freezing in Iran using downscaling SDSM, Journal of Ecology and Issue fifteenth and sixteenth, 4(15 and 16): 117-128.
Benestad, R.E. (2011). A new global set of downscaled temperature scenarios, Journal of Climate, 24(8): 2080-2098.
Erlat, E. and Türkeş, M. (2012). Analysis of observed variability and trends in numbers of frost days in Turkey for the period 1950-2010, International Journal of Climatology, 32(12): 1889-1898.
Esmaeili, R.; Nokhandan, M.H. and Fallah Qalhari, G.h. (2010). Evaluate the changes of the growing season and frost due to climatic fluctuations, Case Study: Khorasan, Physical Geography Research, 73: 69-82.
Ghasemi, A.R. (2015). Changes and trends in maximum, minimum and mean temperature series in Iran, Atmospheric Science Letters, 16(3): 366-372.
Ghorbani, Kh. and Valizadeh, E. (2014). Studying frost and chilling dates affecting agriculture under climate change (Case study: Mashhad, Tabriz and Qazvin), J. of Water and Soil Conservation, 21(4): 197-2014.
Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; ... and Wood, R.A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Climate Dynamics, 16(2-3): 147-168.
Hashemi-Ana, S.K.; Khosravi, M. and Tavousi, T. (2015). The effect of climate change on during dry periods in Iran. PHD Thesis of the Climatology, Department of Geography and Environmental Planning, University of Sistan and Baluchestan, October 2015.
Loginov, V.F.; Mikutskii, V.S. and Kuznetsov, G.P. (2007). Statistical and probability analysis of frosts in Belarus, Russian Meteorology and Hydrology, 32(10): 651-657.
Meehl, G.A.; Tebaldi, C. and Nychka, D. (2004). Changes in frost days in simulations of twenty first century climate, Climate Dynamics, 23(5): 495-511.
Mahmoudi, P.; Khosravi, M.; Masoodian, A. and Alijani, B. (2012). Zoning and Monitoring Frosts of Iran, PHD Thesis of the Climatology, Department of Geography and Environmental Planning, University of Sistan and Baluchestan, October 2012.
Masoodian, A. and Darand, M. (2013). Analysis of trend the number of frost days in Iran. Geography and Development, 39: 49-60.
Masoodian, A. (2009). Iran's Weather, Mashhad: Published by Sharia Toos.
Mohammadi, H.; Azizi., Gh; Khosh Akhlagh, F. and Ranjbar, F. (2015). The trend of freezing days in Iran (1982-2012), Geography, Journal of the International Association of geography, The new period, the thirteenth year, 46: 119-136.
Nasa (2017). https://www.giss.nasa.gov/research/news/20170118/.
Rabbani, F. and Karami, F. (2009). Assessment of the number of frost days in North Khorasan province, Quarterly Geography, 1(4): 85-94.
Rezai, P. and Abed, h. (2010). Assess changes in minimum temperature synoptic station in Rasht Focusing on Frost, Journal of Geography and Environmental Studies, 4:  39-48.
Salinger, M.J. and Griffiths, G.M. (2001). Trends in New Zealand daily temperature and rainfall extremes, International Journal of Climatology, 21(12): 1437-1452.
Sedaghat Kerdar, A. and Rahimzadeh, F. (2007). Variation of growing season length (GSL) over second half of 20th in Iran, Research and development, 75: 193-182.
Semenov, M.A.; Brooks, R.J.; Barrow, E.M. and Richardson, C.W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Climate research, 10(2): 95-107.
Semenov, M.A. and Barrow, E.M. (2002). LARS-WG a stochastic weather generator for use in climate impact studies, User’s manual, Version3.0.
Semenov, M.A. and Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts, Climate research (Open Access for articles 4 years old and older), 41(1): 1.
Sinha, T. and Cherkauer, K.A. (2010). Impacts of future climate change on soil frost in the midwestern United States, Journal of Geophysical Research: Atmospheres, 115(8): 1-16.
Stouffer, R.J.; Broccoli, A.J.; Delworth, T.L.; Dixon, K.W.; Gudgel, R.; Held, I.; ... and Soden, B. (2006). GFDL's CM2 global coupled climate models, Part IV: Idealized climate response, Journal of Climate, 19(5): 723-740.
Zhai, P. and Pan, X. (2003). Trends in temperature extremes during 1951-1999 in China, Geophysical Research Letters, 30(17).