The Application of Remote sensing and GIS Techniques for Flood Risk Zoning Multi Criteria Approach, Urmia, Iran

Document Type : Full length article


1 Assistant Professor of Environmental Science, Faculty of Planning and Environmental Science, University of Tabriz

2 MSc in Remote Sensing and Geographic Information Systems, Faculty of Planning and Environmental Science, University of Tabriz

3 MSC in Remote Sensing and Geographic Information Systems, Faculty of Planning and Environmental Science, University of Tabriz


The flood is considered as a natural disaster with the highest financial losses according to the Report of the United Nations Development Program. The floods are harmful to the urban and suburban areas. River floods and flood plains have been a source of great interest in the past while the flood has been considered less in the urban environment. The socio-economic consequences of flood in the urban environment have affected inevitably more than 2.49% of the world inhabitants. 
Construction of buildings on urban areas is increasing impermeable surfaces. Development of built surfaces in the urban areas can also decrease permeable levels of the basin that is useful for absorbing runoff. It has increased the total volume of runoff in the city. Until now, flood risk zoning with the aim of flood control in Urmia has not been considered greatly. This topic received not remarkable attention in the form of a research project. Therefore, flood risk zoning and controlling is essential to predict the extent of flood damage in different economic and social circumstances.
Materials and methods
In this research, we have used linear weighted Combination and fuzzy multi-criteria analysis and Geographic Information System (GIS) for zoning of flood hazard in urban areas of ​​Urmia. The weighted linear combination method is the most commonly used technique in multivariable analysis. This technique is called either simple additive weighting or scoring method. This method is based on the mean weight concept. The analyst directly estimates the criteria based on the "relative importance" of each criterion. After multiplying the relative weights in the values of each criterion, a final value for each alternative is obtained. After determining the final value of each alternative, the alternative with the highest value will be selected for the goal. The weighted linear composition method is an averaging technique that simplifies the hard decisions of the Boolean method and avoids excessive estimation. The linear weighting method consists of four steps: 1) First, to determine a set of evaluation criteria (map layers) as well as a set of possible options; 2) to standardize each map variable;  3) Third, to determine directly the relative importance of weights of each criterion; 4) at the end, to create a standardized weighted map. In this research, various natural and human criteria have been used to achieve the goal. At first, we have prepared nine natural and human effective indicators including distance to river, runoff coefficient, building age, construction density, population density, slope, CN coefficient, open space availability and land use condition. After digitizing the maps, since each map has a different measurement scale, for the analysis and evaluation of several criteria, we need to make same measurement scale for all of our variables. Standardization of data converts all values ​​of the maps into the same domain, for example, between 0 to 1 or 0 to 255. Then, by defining the binary comparison matrix, using the Hierarchical Analytic Hierarchy Model, the significance of the weights was determined with 0.07 inconsistency ratio in the Expert Choice software. According to the final map of flood risk zonation, the central areas of the Urmia City are more susceptible to floods. This problem has been exacerbated by the proximity of urban areas to densely populated areas and buildings in flood prone area where increase the amount of runoff and accumulation of surface waters. The WLC technique using weighting method has provided powerful solutions for researchers in multi criteria problems like flood zoning. On the other hand, this model is one of the commonly used methods for evaluating environmental problems with the MCDM fuzzy method that have been widely used in the GIS environment.
Results and discussion
After creating a flood risk zoning map, it was declared that the central areas of the Urmia City had the highest flood potential. The flood risk map shows that from all the total area of the Urmia City, about 22.31% is located in the very high danger zone, 29.08% in the high risk zone, 26.45% in the middle danger zone, 17.52% in the low risk zone, and 4.64% in the very low risk zone. Urmia Urban Development strategy should be planned with regarding the flood potential map of the city. The map showed that over 50% of the urban areas are categorized in very high and high risk zones. Given the flood potential map, it is suggested that it is required to create underground and diverse canals in flood-prone areas for discharges of surface runoffs to secure vulnerable areas, especially in the central parts of the Urmia City.
According to the results of this research, more than 50 percent of the Urmia city is very highly and highly at risk of flooding. Therefore, it is necessary to the flood prone areas for municipal activities and urban management. To secure vulnerable areas, underground canals and flood diversion route, especially in the downtown areas, can be constructed to discharge surface runoff to avoid the flood damage.   


Main Subjects

بدیعی‏زاده، س.؛ بهره‏مند، ع. و آرامی، ع. ( 1394). پهنه‏بندی خطر و برنامة مدیریت رواناب شهری با استفاده از تکنیک‏های GISو AHP (مطالعة موردی: شهر گرگان، استان گلستان)، نشریة پژوهش‏های حفاظت آب و خاک، 23(1): 299-308.
حجازی، ا.؛ اندریانی، ص.؛ الماس‏پور، ف. و مختاری اصل، ا. (1394). استفاده از تکنیک‏های تصمیم‏گیری چندمعیاره و سنجش از دور در محیط GIS برای بررسی مناطق حساس به وقوع سیلاب در حوضة لیقوان‏چای، هیدروژئومورفولوژی، 3: 61ـ80.
خلیلی زاده، م؛ مساعدی, ا. و نجفی­نژاد، ا. (1382). پهنه بندی خطر سیل در بخشی از محدوده رودخانه زیارت در حوزه آبخیز شهری گرگان، مجله علوم  کشاورزی و منابع طبیعی، 12(4): 138-149.
رسولی، ع.؛ محمودزاده، ح.؛ یزدچی، س. و زرین‏بال، م. (1391). ارزیابی روش‏های تحلیل سلسله‏مراتبی و ترکیب خطی وزنی در مکان‏یابی محل دفن مواد زاید شهری، موردشناسی: شهرستان مرند، جغرافیا و آمایش شهری‏‏- منطقه‏ای، 4: 41-52.
سازمان نقشه‏برداری کشور (1375). نقشة توپوگرافی 1:50000 منطقة مورد مطالعه.
سالنامة آماری استان آذربایجان غربی (1390).
معاونت شهرسازی و معماری شهرداری شهر ارومیه (1392). طرح جامع شهر ارومیه.
صالحی، ا.؛ رفیعی، ی.؛ فرزاد بهتاش، م. و آقابابایی، م. (1392). پهنه‏بندی خطر سیلاب شهری با استفاده از GIS و فرایند تحلیل سلسله‏مراتبی فازی (مطالعة موردی: تهران)، محیط‏شناسی، 39(3): 179-188.
طاهری بهبهانی، م. و بزرگ‏زاده، م. (1375). سیلاب شهری، انتشارات مرکز مطالعات و تحقیقات شهرسازی و معماری ایران.
قنواتی، ع. (1393). ارزیابی و پهنه‏بندی خطر رخداد سیلاب در حوضة فرحزاد (تهران) با استفاده از مدل فازی، جغرافیا و مخاطرات محیطی، 8: 113- 131.
کرم، ا. و درخشان، ف. (1391). پهنه‏بندی سیل‏خیزی، برآورد سیلاب و ارزیابی کارایی کانال‏های دفع آب‏های سطحی در حوضه‏های شهری (مطالعة موردی حوضه: آبشوران درکرمانشاه)، جغرافیای طبیعی، 5(6): 37-54.
کرم، ع. (1383). کاربرد مدل ترکیب خطی وزین (WLC) در پهنه‏بندی پتانسیل وقوع زمین‏لغزش مطالعة موردی: منطقة سرخون در استان چهارمحال و بختیاری، جغرافیا و توسعه، 131-146.
مبارکی، ا؛ محمدی، ج. و ضرابی، ا. (1392). ارائة الگوی بهینة گسترش کالبدی- فضایی شهر ارومیه، جغرافیا و توسعه، 32: 75- 88.
محمودزاده، ح.؛ امامی‏کیا، و. و رسولی، ع. (1394). ریز پهنه‏بندی خطر سیلاب در محدودة شهر تبریز با استفاده از روش AHP، تحقیقات جغرافیایی، 30(1): 167-180.
موسوی، م.؛ عابدینی، م.؛ و اسمعلی عوری، ا. (1393). ارزیابی خطر زمین‏لرزه در حوزة شهری ایذه با استفاده از مدل‏های چندمعیارة WLC و AHP در محیط GIS، مدیریت بحران، 7: 93-101.
Badiezadeh, C.; Bahremand, A. and Arami, A. (2015). Risk zoning and urban runoff management, using GIS techniques and AHP (Case study:Gorgan, Golestan province), Journal of soil and water conservation, 23(1): 299-308 (In Persian).
Buchele, B. et al. (2006). Flood-risk mapping :contributions towards an enhanced assessment of extreme events And associated risks, Natural Hazards and Earth System Sciences, 6: 485-503 .
Chen, J.; Zhao, sh and Wang, H. (2011). Risk Analysis of Flood Disaster Based on Fuzzy Clustering Method, Energy Procedia, 5: 1915-1919.
Cram, A. (2004). Application of weighted linear combination (WLC) in potential zoning landslides (case study: Surkhan region in Chaharmahal and Bakhtiari Province, Journal of Geography and Development, 131-146 (In Persian).
Cram, A. and Derakhshan, F. ( 2012). Zoning flooding, flood estimation and evaluation of the efficiency of utilization of surface water channels in urban basins (Basin Case Study: Kermanshah Absheron), Natural Geography Quarterly, 5 (6): 37-54 (In Persian).
Eastman, Ronald (2012). Idrisi selva tutorial, Clark University.
Ghanavati A. (2014). Risk assessment and mapping of flood event in the area of Farahzad (Tehran), using fuzzy model, Geography and environmental hazards, 8: 113- 131(In Persian).
Hagen, E.; Shroder, J.F; Lu, X. X and Teufert; J.F. (2010). Reverse engineered flood hazard mapping in Afghanistan: A parsimonious flood map model for developing Countries, Quaternary International, XXX, 1-10.
Hejazi, A.; Andreani, S.; Almaspur, F. and Mokhtariasl, A. (2015). The use of multi-criteria decision-making techniques in GIS and remote sensing to survey areas vulnerable to flooding in the basin Lighvanghai, Hydrogeomorphology, 3: 80-61.
Kalantari, Z.; Nickman, A.; Lyon, S.W.; O1ofsson, B. and Folkeson, L. (2014). A method for mapping flood hazard along roads, Enveironmental Management, 133: 69-77.
Khalil Zadeh, M., Fosaedi, A., Najafi Nejad, A. 2005. Flood hazard zonation of part of the     Ziyarat river in the Urban basin of Gorgan, Agricultural Sciences and Natural Resources, 12: 138-149.
Chengguang Lai.; Shao, Q.; Chen, X.; Wang, Zh.; Zhou, X.; Yang, B. and Zhang, L. (2016). Flood risk zoning using a rule mining based on ant colony algorithm, Journal of Hydrology, 542: 268-280.
Maantay, M. and  Marko, A.A. (2009). Mapping Urban Risk: Flood, Race and Environmental Justice in New York, Applied Geography, 29: 111 -124.
MahmoudZadeh, H., Imami Kia, V. and Rasouli, A. (2015). Fine mapping of flood risk in the city of Tabriz, using AHP, Geographical Research Quarterly, 30(1): 167-180 (In Persian).
Malczewski, J. (1999). GIS and Multicriteria Decision Analyiss, John Wiely and sons, New york.USA.
Mobaraki, A.; Muhammadi, J. and Zarabi, A. (2013). Presentation of model for optimal physical-spatial expansion of the city of Orumiyeh, Geography and Development, 32: 75-88 (In Persian).
Mousavi, M.; Abedini, M. and Asmly Vry, A. (2014). Seismic risk assessment in the urban areas of ize, using multi-criteria model WLC and AHP in GIS environment, Journal of Disaster Management, 7: 93-101 (In Persian).
Municipality of Orumiyeh, Department of Planning and Architecture (2013). Master Plan for the city of Orumiyeh (In Persian).
National Cartographic Center (1996). Topographic Map 1: 50000 area of study (In Persian).
Rasouli, A.; Mahmoodzadeh, H.; Yazdchi, C. and Zarrinbal, M. (2012). Evaluation of AHP and linear weighted combination in site selectioning municipal waste in the Landfill (Case study: Marand city, geography and urban- regional planning, Fall 2012, 4: 41 -52 (In Persian).
Salehi, A.; Rafiee, Y.; Farzad Behtash, M. and Aghababaei, M. (2013). Urban flood risk mapping, using GIS and fuzzy AHP (Case study: Tehran), Ecology, 39(3): 179-188 (In Persian).
Statistical Yearbook of West Azerbaijan province (2011).
Taheri Behbehani, M. and Bozorgzadeh, M. (1996). Urban floods, Publications of Research Center and the researches of Urban Planning and Architecture (In Persian).
Van der Sande, C.J; De Jong, S.M. and De-Roo, A.P.J. (2003). A segmentation and classification approach of IKONOS-2 imagery for landcover mapping to assist flood risk and flood damages assessment, International journal of applied Earth observation and Geolandformation, 4: 217-229.
Volume 49, Issue 4
January 2018
Pages 719-730
  • Receive Date: 29 June 2016
  • Revise Date: 17 December 2016
  • Accept Date: 09 April 2017
  • First Publish Date: 22 December 2017