Regionalization of Susceptibility to Drought in Najaf Abad Basin

Document Type : Full length article

Authors

1 Professor of GIS, Faculty of Geodesy and Geomatics Engineering, Khaje Nasir University, Tehran, Iran

2 Professor of Hydrology, Geography and Humanities, Isfahan University, Isfahan, Iran

3 Graduate in Remote Sensing and Geographic Information System, Environment Department, Olom Tahghighat University, Tehran, Iran

Abstract

Introduction
Drought as a complex phenomenon involves extensive research. Therefore, being aware of the drought situation in high risk areas can reduce the damage and problems and enhance the ability to manage natural and agricultural resources. Fortunately, the advent of new technologies for identifying and zoning in high risk areas made it possible to conduct extensive research in this field. Isfahan province is located in the Central Plains of Iranwith dry weather conditions. Decrease in rainfall, over exploitation of wells and misuse of water resources play an important role recently drought in the province. Najaf Abad Plain is one of the Basins located in this province. Placement of a modern irrigation network, a sharp drop in groundwater levels and reduction of water discharge are important factors in this area. Thus, this area is selected as study area in this research. Unfortunately, frequent droughts in parallel with drying up of Zayanderood River brought about undesirable effects on the local economy in the recent years. The aim of this study is to help the researchers and decision makers choose proper management decisions of water resources in this area by identifying the areas susceptible to drought.
Materials and methods
In this study, we have used meteorological data and satellite images in a 25-year period. According to rainfall data from weather stations, three years of high rainfall (1995), low rainfall (2008) and normal year (2015) were selected and the amount of actual evapotranspiration was calculated using SEBAL algorithms on the ETM+ images and Penman-Monteith method on meteorological data. For this purpose, 36 images of landsat5, and 8 ETM+ were downloaded from the earth explorer site in these years. The period covered by each image found and the amount of monthly reference evapotranspiration was calculated using Penman-Monteith and meteorological data. Monthly reference evapotranspiration were multiplied by the daily evapotranspiration values and monthly actual evapotranspiration. Annual evapotranspiration was obtained by monthly actual evapotranspiration values. Then, the rainfall zoning map was prepared by interpolation of rainfall data from weather stations. Fuzzy Method and weighted overlay are a method to determine the areas susceptible to drought. Fuzzy method was used in this study because Fuzzy method shows better and clearly results. Finally, the sensitive areas were identified by overlaying fuzzy maps of rainfall and evapotranspiration in these three years.
Results and Discussion 
Comparing the results of Penman-Monteith and SEBAL algorithm showed that the root mean square error of these two methods is about 0.21 and 0.73, respectively. In other words, 73 percent of evapotranspiration in Penman-Monteith method can justify the changes resulted from the SEBAL method and so can be trusted by regression equation. Because the determination coefficients of the regression are high, so it can show changes in dependent and independent variables. Results indicate that the evapotranspiration value highest in 2008 and lowest in 1995. The result shows that South and Southeast regions of Najaf Abad are more sensitive than other parts and they have higher risk of drought in 1995. Because in this part evapotranspiration is high and rainfall is low. Therefore, the drought sensitive areas have been identified. In 2008, the probability of drought in those regions has continued. The difference is that the number of pixels in 1995 showed less sensitive to drought than those in 2008. While at the same area in 2008 more pixels have been involved in drought with large scale mapping of sensitive areas. In addition to the central and western regions of Eastern areas, there are also many other susceptible areas to drought. This result matches with the result of Standardized Precipitation Index (SPI). Because the Standardized Precipitation Index (SPI) shows that intense meteorological drought has occurred in this area. However, the zoning map shows sensitive area. The southern and southeastern areas are out of drought situation and they have favorable conditions in 2015. This result shows that rainfall is better in this part of the basin.
Conclusion
The results of this research help experts identify the areas prone to drought events. We need proper planning to reduce the effects of drought in the areas with high risk more than before based on the map resulted in this research. It is recommended that the methods used for irrigation and cropping patterns are according to region and the effects of drought.

Keywords

Main Subjects


ابریشم‏کار، م. و احمدی، آ. (1393). طرح تحقیقاتی کاربرد سنجش از دور در برآورد تبخیر و تعرق واقعی در تعیین نیاز آبی، شرکت آب منطقه‏ای اصفهان.
بزرگ‏مهر، ک.؛ حکیم‏دوست، ی. و پورزیدی، ع. (1395). مکان‏یابی بهینة ایستگاه سینوپتیک با روش منطق فازی و فرایند تحلیل سلسله‏مراتبی مورد مطالعه: شهرستان تنکابن، دو فصل‏نامة پژوهش‏های بوم شناسی شهری، 2(7): 29ـ30.
پورمحمدی، س.، دستورانی، م.، مختاری، م.ح. و رحیمیان، م.ح. (1389). تعیین و پهنه‌بندی تبخیر و تعرق واقعی توسط تکنیک
سنجش از دور و الگوریتم سبال مطالعۀ موردی: حوضۀ آبخیز منشاد در استان یزد، مجلۀ علوم و مهندسی آبخیزداری ایران، 13(4): 21.
رستم‏زاده، ه. (1393). کاربرد داده‏های دورسنجی در پهنه‏بندی مناطق آسیب‏پذیر نسبت به خشک‏سالی (مطالعة موردی دشت سراب)، پایان‏نامة کارشناسی ارشد، دانشکدة علوم انسانی و اجتماعی، دانشگاه تبریز.
وزارت جهاد کشاورزی (1391). گزارشطرحجامعمدیریتخطرپذیریخشکسالی کشاورزی، تهران.
عبدلی، ح. (1389). برآورد تبخیر- تعرق با استفاده از الگوریتم توازن انرژی سطح برای زمین و تصاویر ‏ماهواره‏ای، پایان‏نامة کارشناسی ارشد، دانشکدة کشاورزی، دانشگاه صنعتی اصفهان.
عمرانی، ح.؛ ولی‏زاده، خ. و حجازی، آ. (1393). کاربرد سنجش از دور و GIS در مطالعة شاخص‏های خشک‏سالی به روش سبال کوهستانی،پایان‏نامة کارشناسی ارشد، دانشکدة علوم انسانی و اجتماعی، دانشگاه تبریز.
قمرنیا، ه. و رضوانی، و. (1393). محاسبه و پهنه‏بندی تبخیر- تعرق با استفاده از الگوریتم سبال در غرب ایران، آبوخاک، 28(1): 72-81.
هاشمی دوین، م. و آهنگرزاده، ز. (1392). پایش خشک‏سالی استان خراسان شمالی در محیط GIS، نخستین کنفرانس ملی آب و هواشناسی ایران، دانشگاه صنعتی و فناوری پیشرفته، کرمان.
Abrishamkar, M. and Ahmadi, A. (2014). A research project on the application of remote sensing for estimating actual evapotranspiration in water demand assessment, Regional Water Company Isfahan.
Allen, R.G.; Tasumi, M. and Trezza, R. (2008). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model, Irrigation and Drainage Engineering, 133(4): 380-394.
Abdoli, H. (2011). Estimation of Evapotranspiration Using Surface Balance Algorithm for Land (SEBAL) and Satellite Images, Master's thesis, Faculty of Agriculture, Isfahan University of Technology. (In Persian).
Bastiaansssen, W.G.M. (2000). SEBAL- based sensible and latent heat fluxes in the irrigated Gediz Basin, Hydrology, 229(1, 2): 87-100. (In Persian).
Bozorgrmehr, K.; Hakimmdost, Y. and Porzeidi, A. (2017). Optimal positioning station using Fuzzy logic and AHP case study: Tonkabon, Biannual Journal of Urban EcologyResearches, 2(7): 29-30.
Courault, D.; Seguin, B. and Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches, Irrigation and Drainage system, 19: 223-249.
Department of Agriculture (2012). Description of Services Master Plan Risk Management drought, Tehran, Iran.
Ghambarnia, H. and Rezvani, W. (2013). zoning and calculated evapotranspiration using the algorithm closer to the West, Iran (plain Miandarband), Soil and Water, 28(1): 72-81. (In Persian).
Hao, Z.; Hao, F.; Singh, V.P.; Ouyang, W. and Cheng, H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment, Environmental Modeling and Software, 91: 199.
Hashemi Davin, M. and Angarzade, Z. ( 2013). Drought monitoring North Khorasan province in GIS, Iran's National Meteorological Conference, Industrial and Technology Graduate University, Kerman.
Melesse, A.M. (2004). Spatiotemporal dynamics of land surface parameters in the Red River of the North Basin, Physics and Chemistry of the Earth, 29(11, 12): 795-810.
Miller, R.B. and Fox, G.A. (2017). A tool for drought planning in Oklahoma: Estimating and using drought-influenced flow exceedance curves, Journal of Hydrology: Regional Studies, 10: 35.
Meijerink, A.M.J.; Gieske, A.S.M. and Vekerdy, Z. (2005). Surface energy balance using satellite data for the water balance of a traditional Irrigation-Wetland system in SW Iran, Irrigation and Drainage system, 19(1): 89-105.
Omrani, H.; Valizade, Kh. and Hejazi, A. (2015). Application of remote sensing and GIS in the study of drought indices using mountain SEBAL Case Study: East Azarbaijan, Master's thesis, Faculty of Humanities and Social Sciences, University of Tabriz. (In Persian).
Pathak, A.A. and Dodamani, B.M. (2016). Comparison of two hydrological drought indices, Perspectives in Science, 8: 626-628.
Pormohamadi, S.; Dastorani, M.; Mokhtari, M.H. and Rahimian, M.H. (2011). Real using by Remot sensing and SEBAL algorithm Case study: Manishad Watershed in evapotranspiration Yazd Province, Journal of Iran-Watershed Management Science & Engineering, 13(4): 21.
Rostamzade , H.; Jahanbakhsh asl, S. and Sari saraf, B. (2015). The use of telemetry data in regions vulnerable to drought zoning (Case Study Sarab plain), Master's thesis, Faculty of Humanities and Social Sciences, University of Tabriz. (In Persian).
Waters, R.; Allen, R.; Tasumi, M.; Trezza, R. and Bastiaanssen, W. (2002). SEBAL Surface Energy Balance Algorithms for Land, First edition, NASA EOSDIS/Synergy grant from the Raytheon Company through The Idaho Department of Water Resources Publishing.