Comparison of Temporal and Spatial Changes of Groundwater Level in Isfahan-Borkhar, Najafabad and Chadegan Plains

Document Type : Full length article


1 MSc. Student in Watershed Management Engineering, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Iran

2 Associate Professor of Watershed Management Engineering, Faculty of Natural Resource and Marine Science, Tarbiat Modares University, Iran

3 Assistant Professor of Watershed Management Engineering, Faculty of Natural Resource, Isfahan University of Technology, Iran


Isfahan province is one of the driest provinces in central part of the country where two-thirds of its water requirement is supplied by groundwater resources. In recent years, with population growth and the increase of water demand in different sectors of agriculture, industry, drinking, and health, groundwater resources have faced a lot of pressure. Thus, understanding the behavior of the groundwater body and its long term trends are essential for making any management decision in the areas. Mann–Kendall statistical test has been commonly used in many researches to assess the significance of trends in hydro-meteorological time series. Geostatistical analysis has been theoretically defined and applied by many researchers and they have emphasized that geostatistics is a management and decision support system tool for analyzing spatial and temporal variations of groundwater level fluctuations. Geostatistical approaches can provide more helpful, reliable and efficient tools to increase the number of measurement points at un-sampled locations, and variogram analyses for examining structural relationship of data (Rakhmatullaev et al. 2011).  
Materials and Methods
In this study, the temporal and spatial variations of groundwater level for Isfahan-Borkhar, Najafabad and Chadegan plains, is investigated with a 25 years period (1990-2015). Monthly water level data have been collected from 29, 40 and 8 observation wells in Isfahan-Borkhar, during the study period. Precipitation data from synoptic, climatology and rain gauge stations were used in this research.
The trend analyses have been conducted at monthly, seasonal and annual scales using Mann-Kendall Test and Sen's slope estimator nonparametric methods by MATLAB.AB 7.11 software. The Mann-Kendall test is a non-parametric method used for trend analysis of time series data. In this method, the presence of a statistically significant trend evaluated using Z value (equation 1).



A positive value of Z indicates an increasing trend and a negative value indicates decreasing trend.
In this research, the null hypothesis (H0) stated that “there is no trend in time series of groundwater levels”. The hypothesis is rejected if the absolute value of Z is greater than ±1.96 and ±2.58 in 5% and 1% level of significance, respectively. If the value of Z is out of this range, the null hypothesis is accepted and there isn’t any trend in time series (Yin et al. 2015).
For investigation of the relationship between groundwater level depletion and rainfall for each of plain, the linear regression was done in annual scale. The groundwater level hydrograph was drawn also for each of plain during 25 years (January 1990 to October 2015). Prior to the geostatistical estimation, it requires a model to compute a semivariogram for any possible sampling interval. The experimental semivariograms were fitted with various theoretical models like spherical, exponential, Gaussian, linear and power in GS+ software. The underground water level zoning maps were prepared by Ordinary Kriging method for every year of the study period. Spatial zoning maps were prepared and ultimately, an iso-falling map was created at the beginning and end of the study in ArcGIS 10.
Results and Discussion
The spatial distribution of trend by the Mann-Kendal test for annual groundwater level data indicated a general trend in all plains where most piezometers groundwater level is negative. The piezometer wells with positive trend were very low and the most positive trend is related to Isfahan plain. In Chadegan plain there wasn’t any positive trend in piezometers level.
The investigation of trend line slopes revealed that in average, the groundwater level of Isfahan-Borkhar, has been decreased about 0.468, 1.12, 0.638 m y-1. The general trend of the groundwater level hydrograph shows that the level and storage of water is continuously decreased in the last years.  
Gaussian variogram model was the best for spatial structure of these data. Generally, the spatial pattern of zoning groundwater maps indicated that direction of groundwater flow is northwest to southeast on all study plains. As well as, the iso-falling map showed that groundwater level has dropped in most parts of the plains during the study period. This was in agreement with the results of the research by Rahmati et al. 2014, Azareh et al, 2014, and De Brito Neto et al. 2016. The cause of this agreement could be a vulnerability of arid region ecosystems into human interference and other stress factors.
Due to the lack of rainfall trend in most of the stations in the study area and low correlation between rainfall and groundwater level change, the major cause of reduced groundwater could be related to human factors. Overexploitation, as a result of population growth, and increasing number of wells are the most important factors in decreasing of the groundwater table. Therefore, the decision is required to manage groundwater in the study area. It is necessary to immediately practice water conservation methods and water harvesting systems in the study area to prevent the causes of more damages to the available water resource.


Main Subjects

آذره، ع.؛ رفیعی ساردویی، ا.؛ نظری سامانی، ع.؛ مسعودی، ر. و خسروی، ح. (1393). بررسی تغییرات مکانی و زمانی سطح آب زیرزمینی در دشت گرمسار، نشریة مدیریت بیابان، 2(3): 11ـ20.
امیدی‏نیا، ط.؛ میرعباسی نجف‏آبادی، ر. و طباطبایی، س.ح. (1395). بررسی نوسانات سطح آب زیرزمینی دشت برخوار اصفهان با استفاده از نرم‏افزار GMS، سومین کنفرانس بین‏المللی پژوهش در علوم و تکنولوژی، برلین، آلمان.
اطرج، ع.؛ مدرس، ر. و بصیری، م. (1393). ارزیابی تأثیر خشک‏سالی و فعالیت‏های انسانی بر منابع آب زیرزمینی (حوضة آبخیز زاینده‏رود)، پایان‏نامه کارشناسی ارشد، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان.
حاجیان، ن. و حاجیان، پ. (1392). پایگاه داده‏های زاینده‏رود، اصفهان: انتشارات پارس ضیاء؛ همای رحمت.
حبشی، ه.؛ حسینی، س.م.؛ محمدی، ج. و رحمانی، ر. (1386). کاربرد تکنیک زمین‏آمار در مطالعات خاک‏های مناطق جنگلی، فصل‏نامة علوم کشاورزی و منابع طبیعی، 14(1):  18ـ24.
پیری، ح. و بامری، ا. (1393). بررسی روند تغییرات کمی سطح ایستابی منابع آب زیرزمینی با استفاده از زمین‏آمار و سیستم اطلاعات جغرافیایی (مطالعة موردی: دشت سیرجان)، مجلة سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، 5(1): 29ـ44.
رحمتی، م.؛ مرادی، ح.ر. و امیدی‏پور، ر. (1393). ارزیابی تغییرات مکانی و زمانی سطح آب زیرزمینی در دشت کرمانشاه، فصل‏نامة علمی‏- پژوهشی مهندسی آبیاری و آب، 5(18): 1ـ16.
زارع ابیانه، ح.؛ بیات ورکشی، م. و معروفی، ص. (1391). بررسی نوسانات عمق آب زیرزمینی در دشت ملایر، نشریة دانش آب و خاک، 22(2): 174ـ188.
سیدی‏پور، م. و وحدت‏پور، ن. (1392). بازیافت پساب تصفیه‏خانة فاضلاب عامل متعادل‏سازی آبخوان اصفهان برخوار در شرایط بحران کم‏آبی، همایش ملی بازیافت آب؛ راهبردی اصولی برای مدیریت بحران آب، تهران، دانشگاه تهران.
شمسایی، ا. (1383). هیدرولیک جریان آب در محیط‏های متخلخل، ج3، کاربرد مدل‏های ریاضی- کامپیوتری، تهران: انتشارات دانشگاه صنعتی امیر کبیر (پلی‏تکنیک).
صمدی، ر.؛ بهمنش، ج. و رضایی، ح. (1394). بررسی روند تغییرات تراز آب زیرزمینی (مطالعة موردی: دشت ارومیه)، نشریة پژوهش‏های حفاظت آب و خاک، ج22(4): 67ـ84.
طاهری تیزرو، ع.؛ نوذری، ح. و علیخانی، ه. (1395). پیش‏بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از مدل ترکیبی سری زمانی-زمین، نشریة علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 20(76): 99ـ133.
غفاری، ص.؛ مرادی، ح.م. و مدرس، ر. (1395). تغییرات زمانی و مکانی سطح آب زیرزمینی با تأکید بر تأثیر کاربری اراضی در دشت‏های چادگان و اصفهان، پایان‏نامة کارشناسی ارشد، دانشکدة منابع طبیعی، دانشگاه تربیت مدرس، 132ص.
محمدی، ص.؛ سلاجقه، ع.؛ مهدوی، م. و باقری، ر. (1391). بررسی تغییرات مکانی و زمانی سطح آب زیرزمینی دشت کرمان با استفاده از روش زمین‏آماری مناسب (طی یک دورة آماری ده‏ساله، 1375ـ1385)، فصل‏نامة علمی- پژوهشی تحقیقات مرتع و بیابان، 19(1): 60ـ 71.
مسعودیان، ا. و کاویانی، م.ر. (1386). اقلیم‏شناسی ایران، اصفهان: انتشارات دانشگاه اصفهان.
مهدوی، م. (1388). هیدرولوژی کاربردی، چ6، تهران: انتشارات دانشگاه تهران.
مهندسین مشاور زایندآب (1387). مطالعات منابع و مصارف آب حوضة زاینده‏رود، ج1: هواشناسی، شرکت سهامی آب منطقه‏ای اصفهان.
میران‏زاده، م. و مأمن‏پوش، ع.ر. (1387). بررسی میزان برداشت ماهانة آب زیرزمینی در محدودة شبکه‏های عمدة آبیاری زاینده‏رود، مجلة پژوهش آب ایران، 2(2): 19ـ26.
وزارت نیرو  (1393). گزارش تمدید ممنوعیت اصفهان- برخوار، شرکت آب منطقه‏ای اصفهان، دفتر مطالعات پایة منابع آب.
Abdullahi, M.G.; Toriman, M.E.; Gasim, A.M. and Garba, I. (2015). Trends Analysis of Groundwater: Using Non-Parametric Methods in Terengganu Malaysia, J Earth Sci Clim Change, 6(1): 1-3.
Advisor Engineer Zayand Water. (2008). Water Expenses and Resourses Studies in Zayandehroud River Basin, Meteorologic, Isfahan Region Water Corporation. (In Persian).
Ahmadi, S.H. and Sedghamiz, A. (2008). Application and Evaluation of Kriging and Cokriging Methods on Groundwater Depth Mapping, Environ Monit Assess, 138(3): 357-368.
Asoka, A., Gleeson, T.; Wada, Y. and Mishra, V. (2017). Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India. Nature Geoscience, 10(2): 109-117.
Azareh, R.; Rafiei Sardoii, E.; Nazari Samani, A.; Masoodi, R. and Khosravi, H. (2014). Study on Spatial and Temporal Variation of Groundwater Level in Garmsar Plain, Journal of Desert Management, 3: 11-20. (In Persian).
Dash, J.; Sarangi, A. and Singh, D. (2010). Spatial Variability of Groundwater Ddepth and Quality Parameters in the National Capital Territory of Delhi, Environmental Management, 45(3): 640-650.
De Brito Neto, R.T.; Santos, C.A.; Mulligan, K. and Barbato, L. (2016). Spatial and Temporal Water Level Variations in the Texas Portion of the Ogallala Aquifer, Natural Hazards, 80(1): 351-365.
Delbari, M.; Motlagh, M.B. and Amiri, M. (2013). Spatio-temporal Variability of Groundwater Depth in the Eghlid Aquifer in Southern Iran, Earth Sciences Research Journal, 17(2): 105-114.
Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation, New York: Oxford Uni. Press.
Ghafari, S.; Moradi, H.R. and Modares, R. (2016). Temporal and Spatial Variation of Groundwater level with Emphasis of Land Use in Chadegan and Isfahan Plains. M.Sc. Thesis, Department of Natural Resources, Tarbiat Modares University. (In Persian).
Habashi, H.; Hoseyni, S.M.; Mohamadi, J. and Rahmani, R. (2007). Application of Geostatistical Technique in Studies of Forestial Regions Soils, Agricultural Sciences and Natural Resources Quarterly, 14(1): 18-24. (In Persian).
Hajiyan., N. and Hajiyan, P. (2013). Zayandehroud River Data Base, Pars Ziya publication, Homaye Rahmat, Isfahan. (In Persian).
Isaaks, E.H. and Srivastava, R.M. (1989). An Introduction to Applied Geostatistics, Oxford University Press, New York.
Hooshmand, A.; Salarijazi, M.; Bahrami, M.; Zahiri, J. and Soleimani, S. (2013). Assessment of Pan Evaporation Changes in South Western Iran, African Journal of Agricultural Research, 8(16): 1449-1456.
Kendall, M.G. (1975). Rank Correlation Measures, Charles Griffin, London.
Kumar, V. (2006). Kriging of Groundwater Levels–a Case Study, Journal of Spatial Hydrology, 6(1): 81-92.
Lettenmaier, D.P.; Wood, E.F. and Wallis, Jn.R. (1994). Hydro-Climatological Trends in the Continental United States, 1948-88, Journal of Climate, 7(4): 586-607.
Mahdavi, M. (2009). Applied Hydrology, Tehran University publication. (In Persian).
Mann, H.B. (1945). Non-parametric tests against trend, Econometrica: Journal of the Econometric Society, 245-259.
Marofi, S.; Soleymani, S.; Salarijazi, M. and Marofi, H. (2012). Watershed-wide Trend Analysis of Temperature Characteristics in Karun-Dez watershed, Southwestern Iran, Theoretical and Applied Climatology, 110(1-2): 311-320.
Masoodian, A. and Kaviyani, M.R. (2007). Iran Climatology, Isfahan University Publication, Isfahan. (In Persian).
Mini, P.K.; Singh, D.K. and Sarangi, A. (2014). Spatio-Temporal Variability Analysis of Groundwater Level in Coastal Aquifers Using Geostatistics, International Journal of Environmental Research and Development, 4(4): 329-336.
Ministry of Energy (2013). Report of Continuation of the Impermissibility of Isfahan-Borkhar, Isfahan Regional Water Authority, Water Resources Management Company, 103 p. (In Persian).
Miranzadeh, M. and Mamanpoush, A.R. (2008). Evaluation of Monthly Depletion of Groundwater in Zayandehroud Irrigation and Drainage Networks, Journal of Research in Iran Water, 2(2): 19-26. (In Persian).
Moazed, H.; Salarijazi, M.; Moradzadeh, M. and Soleymani, S. (2012). Changes in Rainfall Characteristics in Southwestern Iran, African Journal of Agricultural Research, 7(18): 2835-2843.
Mohamadi, S.; Salagegheh, A.; Mahdavi, M. and Bagheri, R. (2012). An Investigation on Spatial and Temporal Variations of Groundwater Level in Kerman Plain Using Suitable Geostatistical Method (During a 10-Year Period), Range and Desert Reseach Quarterly, 19(1): 60-71. (In Persian).
Omidiniyah, T.; Mir Abasi, N. and Tabatabayi, S.H. (2016). Investigation of Variation of Groundwater level in Isfahan-Borkhar Plain Using GMS Software, 3.rd International Conference on Research in Science and Technology, Berlin, Germany. (In Persian).
Otroj, A.; Modarres, R. and Bassiri, M. (2015). Assessment of Drought and Anthropogenic Impacts on Groundwater Resources (in Zayandehroud River Basin), M.Sc. Thesis, Department of Natural Resources, Isfahan University of Technology. (In Persian).
Panda, D.K.; Mishr, A.A. and Kumar, A. (2012). Quantification of Trends in Groundwater Levels of Gujarat in Western India, Hydrol. Sci. Jour, 57(7): 1325-1336.
Piri, H. and Bameri, A. (2014). Investigating the Quantity Variation Trend of Groundwater Table Using Geostatistics and GIS (Case study: Sirjan Plain), Journal of RS and GIS for Natural Resources, 5(1): 29-44. (In Persian).
Rahmati, M.; Moradi, H.R. and OmidiPour, R. (2014). Evaluation of Spatial and Temporal Variation Groundwater Level in Kermanshah Plain, Irrigation and Water Engineering Quarterly, 5(18): 1-16. (In Persian).
Rakhmatullaev, S.; Marache, A.; Huneau, F.Le.; Coustumer, P.; Bakiev, M. and Motelica-Heino, M. (2011). Geostatistical Approach for the Assessment of the Water Reservoir Capacity in Arid Regions: a Case Study of the Akdarya Reservoir, Uzbekistan, Environmental Earth Sciences, 63(3): 447-460.
Samadi, R.; Behmanesh, J. and Rezaei, H. (2015). Investigation of Groundwater Level Changes Trend (Case Study: Urmia Plain), Journal of Soil and Water Conservation, 22(4): 67-84. (In Persian).
Sen, P.K. (1968). Estimates of the Regression Coefficient Based on Kendall’s tau, Journal of the American Statistical Association, 63(32): 1379-1389.
Shamsayi, A. (2004). Hydraulics of Flow in Porous Media, Application of mathematic-computer models, Publication of Amir Kabir University of Technology (Tehran Polytechnic). (In Persian).
Shamsudduha, M.; Chandler, R.E.; Taylor, R.G. and Ahmad, K.M. (2009). Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges- Brahmaputra-Meghna Delta, Hydrology and Earth System Sciences, 13(12): 2373-2385.
Tabari, H.; Nikbakht, J. and Shifteh Some’e, B. (2011). Investigation of groundwater level fluctuations in the north of Iran, Environmental Earth Sciences, 66(1): 231-43.
Taheri Tizro, A.; Nozari, H. and Alikhani, H. (2016). Spatio-Temporal Water Levels Forecasting by Time Series-Geostatistics as a Hybrid Model in Hashtgerd Plain-Alborz Province, J. Sci. and Technol. Agric. and Natur. Resour, Water and Soil Sci., 20(76): 99-113. (In Persian).
Theodossiou, N. and Latinopoulos, P. (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology, Environmental Modelling and Software, 21(7): 991-1000.
Tosunoglu, F. and Kisi, O. (2017). Trend Analysis of Maximum Hydrologic Drought Variables Using Mann–Kendall and Şen's Innovative Trend Method, River Research and Applications, 33(4): 597-610.
Uyan, M. and Cay, T. (2013). Spatial analyses of groundwater level differences using geostatistical modeling, Environmental and Ecological Statistics, 20(4): 633-646.
Yadav, G.S.; Ndatuwong, L.G. and Singh, S.K. (2012). Mapping the spatial extend of groundwater declination using Geostatistical, 4(1): 236-245.
Yin, Y.; Liu, H.; Yi, X. and Liu, W. (2015). Spatiotemporal variation and abrupt change analysis of temperature from 1960 to 2012 in the Huang-Huai-Hai Plain, China, Advances in Meteorology, 11pp.
Zafor, M.A.; Alam, M.J.B.; Rahman, M.A. and Amin, M.N. (2017). The Analysis of groundwater table variations in Sylhet region, Bangladesh. Environmental Engineering Research.
Zare Abyaneh, H.; Bayat Varkeshi, M. and Maeroufi, S. (2012). Investigation of Variation of Groundwater Depth in Malayer Plain, Journal of Water and Soil Sciences, 22(2): 174-188. (In Persian).
Volume 50, Issue 1
April 2018
Pages 141-160
  • Receive Date: 30 January 2017
  • Revise Date: 25 June 2017
  • Accept Date: 22 November 2017
  • First Publish Date: 21 March 2018