Modeling Flow Velocity and the Area of Erosion and Sedimentation at the Entrance of Arvand River to the Persian Gulf Using GIS

Document Type : Full length article


1 MA in Marine Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khoramshahr, Iran

2 Assistant professor of Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khoramshahr, Iran

3 Associate professor of Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khoramshahr, Iran

4 Professor of Marine Biology, Faculty of Marine and Oceanic Science, Khorramshahr University of Marine Science and Technology, Khoramshahr, Iran

5 Lecturer in Oceanography Physics, Department of Physical Oceanography, Faculty of Marine and Oceanic Science, Khorramshahr University of Marine Science and Technology, Khoramshahr, Iran


The rivers usually affected by erosion and sedimentation are subject to various changes in transverse and longitudinal movements and variations in river bed elevation, particle size and geometrical properties. Erosion and sedimentation studies provide the opportunity to identify the behavior of river morphology and the effects of different measures to reorganize its behavioral performance on quantitative and qualitative data.  Arvand is a vital river in southwestern Iran serving as the Iran-Iraq border. The purpose of this research is to determine the area of erosion and sedimentation in relation with flow velocity and pollution dispersion in the banks of Arvand River using Coherence model and GIS.
Materials and methods 
In this study, three-dimensional hydrodynamic model of coherence is used to simulate the flow velocity in Navier-Stokes equations in three dimensions. Boundary conditions including changes in temperature, salinity and flow rate, temperature and salinity changes are considered and for open border river and tidal components including O1, S2, M2 and K1 are used in open sea in the model. We have used bathymetric maps of the Armed Forces and also hydrographic maps in the scale of 1: 25,000 in GIS through digital interpolation. In this study, we employed a computational grid of 80 x 83 meters with an accuracy of 96.52 * 97.48 km. Aerial photos are one of the most effective tools in the interval erosion and unsustainable use. The aim of this study is to determine the scope of erosion and sedimentation in Arvand River using GIS. The GIS is a computer-based technology that uses geographic information systems as a framework for managing and combining data, solving problems and understand situations in the past, present and future applications. The application can identify the areas of erosion and sedimentation in Arvand River and classification of pollution scattering.
Results and discussion  
To show the flow rate in different parts of the river, three cross-sections have been gathered in different times and different places upstream, mid-stream and river mouth for measuring the average speed. According to the average values of the speed upstream, it is observed that the water flow rate of are greater on bank of Iranian coast.  In the middle and downstream sections of the river, the average flow rate values can be observed as Table 1.
Table 1. erosion and sedimentation in different parts of the Arvand river coast

Long range (%)

Long range (km)




Sediment on the beach



Beach erosion



Established beach



Most of the beaches in the study area are related to sedimentation, about 62 percent of the length. Due to different horizontal sectioning of speed on the river and the output flow velocity of the coherence we conclude that in the places where the water flow rate is higher, we can observe more erosion, less flow speed, and more sedimentation. The places covered more with the sediments, there is the highest pollution. The average water flow rate on the Iranian coast is higher than the coast of Iraq. As a result, it is observed that the rate of erosion on the coast of Iran is greater than that in the coast of Iraq and that on the coast of Iraq we can see more sedimentation and less erosion. In the mouth of the river, the average speed is lower than that in the middle of the river and on the other side of the river beach. Therefore, there are more sedimentation and erosion on the two shores of Iran and Iraq.  


Main Subjects

آذرنگ ف.؛ شفاعی بجستان م.؛ دهان‏زاده، ب. و شاهی‏نژاد، ب. (1388). کاربرد مدل یک‏بُعدی CCHE در شبیه‏سازی هیدرولیکی و رسوبی رودخانه (مطالعة موردی: رودخانة کارون، بازة اهواز- فارسیات)، هشتمینسمینارمهندسیرودخانه، دانشگاه شهید چمران اهواز.
امامقلی‏زاده، ص.؛ شیردل، س.؛ گنجویان، م.؛ محمدیون، م. و فتحی‏مقدم، م. (1389). بررسی وضعیت فرسایش و رسوب‏گذاری رودخانة شیرین‏دره با استفاده از مدل HEC-RAS، مجلة مهندسی آب، 1: 19ـ34.
جباری، آ.؛ حسینی، س. ا.؛ حقی‏آبی، ا.ح.؛ امامقلی‏زاده، ص. و بهنیا، ع. (1393). برآورد دبی انتقال رسوب رودخانه با استفاده از مدل ریاضی HEC-RAS، فصل‏نامة علمی‏- پژوهشی مهندسیآبیاریوآب، 4(16).
جهان‏سیر، ر. (1380). بررسی تأثیر عوامل خطر فرسایش خاک (عوامل مدل FAO) در میزان فرسایش با استفاده از GIS در حوضة آبخیز زیارت، پایان‏نامة کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
حسنلو، م. (1382). مقایسه و واسنجی روش MPSIAC با آمار رسوب در حوضة آبخیز تهم زنجان، پایان‏نامة کارشناسی ارشد، دانشکدة منابع طبیعی دانشگاه تربیت مدرس.
شرکت مهندسی مشاور دزآب. (1381). گزارش زیست‌محیطی، طرح ساماندهی آبراهۀ کارون.
روستایی، ش.؛ رسولی، ع.ک و احمدزاده، ح. (1389). مدل‏سازی فرسایش و رسوب حوضة آبریز قلعه‏چای عجب‏شیر با استفاده از داده‏های ماهواره‏ای در محیط GIS ، نشریة جغرافیا و توسعه، 8(18): 159 ـ 178.
ظهیری، ع.؛ شاهی‏نژاد، ب. و رستمی، س. (1388). شبیه‏سازی وضعیت رسوب‏گذاری رودخانة کارون با استفاده از مدل ریاضی GSTARS 2.0 (حدفاصل ایستگاه‏های هیدرومتری اهواز تا فارسیات)، نشریة پژوهش‏های حفاظت آب و خاک(علوم کشاورزی و منابع طبیعی)، 16(4): 25 ـ 42.
کریمی، م. (1390). مدل‏سازی عددی ترکیبی پخش و انتشار لکه‏های نفتی و رسوب‏گذاری و روند انتقال رسوبات آغشته به مواد نفتی، پایان‏نامة کارشناسی ارشد در رشتة آب- هیدرولیک، دانشکدة مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی.
محمودیان، م. (1392). توزیع رسوبات معلق با تکیه بر فازهای کشندی در مصب اروند، پایان‏نامة کارشناسی ارشد فیزیک دریا، دانشگاه علوم و فنون دریایی خرمشهر.
سازمان مدیریت و برنامه‏ریزی کشور (1386). راهنمای مطالعات فرسایش و رسوب در سامان‏دهی رودخانه‏ها، تهران: انتشارات سازمان مدیریت و برنامه‏ریزی کشور، مرکز مدارک علمی، نشریة شمارة 383.
Admiralty tide table U port No.4268 (2008).Arvand Rood, Hydrographic of the Navy.
Alessi, C.A.; Hunt, H.D. and Bower, A.S. (1999). Hydrographic data from the U. S. NavalOceanographic Office: Persian Gulf, southern Red Sea. and Arabian Sea 1923 – 1996, Tech. Rep. WHOI-99-02, WoodsHole Oceanography. Inst.,Woods Hole, Mass.
Azarang F.; Shafaei bejestan, M.; Dahanzadeh, B. and Shahinezhad, B. (2009). CCHE one-dimensional model for simulating the hydraulic and Sediment (Case study: Karoon River, between Ahvaz - Farsiat), Eighth River Engineering Conference, Shahid Chamran University of Ahvaz.
Bingchen, L.; Huajun, L. and Aiqun, W. (2008). Aplication of COHERENS-SED in modeling, contaminant transport of Yangpu Bay Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, August 24-30, Darmstadt, 159-163.
Canfield, H.E.; Wilson, C.J.; Lane, L.J.; Crowell, K.J. and Thomas, W.A. (2005). Modeling scour and deposition in ephemeral channels after wildfire, Journal of Catena, 61(2-3): 273-291.
Devent, J. and Poesen., J. (2005). Peredictig Soil erosion and sediment yield at the basin scale, Scale issues and and semi-quanlitation Model, Earth Science, 20: 1-31.
Emamgholizadeh, S.; Shirdel, S.; Ganjavian, M.; Mohammadioun, M. and Fathimoghadam, M. (2010). Check the status of the shirindareh river erosion and and sedimentation model HEC-RAS, Water Engineering Journal, 1: 19-34.
Garcia, M.H. (2004). Sedimentation and Erosion Hydraulics, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign.
Gibson, S.; Brunner, G.; Piper, S. and Jensen, M. (2006). Sediment transport computations with HEC-RAS, Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), April 2-6, 2006, Reno, NV, USA.
Hasanloo, M. (2003). Comparison and calibration methods MPSIAC Statistics watershed of tahm Zanjan, Master Thesis, Department of Natural Resources Tarbiat Modarres University.
Hey, R.D. (1986). River response to hydraulic structures, Paris: UNESCO.
Jabari, A.; Hoseini, S.A.; Haghabi, A.H.; Emamgholizadeh, S. and Behnia, A. (2014). River sediment transport Flow is estimated using a mathematical model HEC-RAS, Journal of Irrigation & Water Engineering, 16: 93.
JahanSyr, R. (2001). The effect of the risk factors of soil erosion (of the FAO) on the rate of erosion in the ziarat Aquiverous Basin using GIS, M.Sc. Thesis, Gorgan University of Agricultural Sciences and Natural Resources.
Karimi, M. (2011). Numerical modeling composition and distribution of oil spills and oil-stained sediment transport, Master's thesis in the field of water-hydraulic, Department of Civil Engineering, University of Nasir al-DinTusi.
 Luyten, P.J.; Jones, J.E.; Proctor, R.; Tabor, A.; Tett, P. and Wild- Allen, K. (1999). COHERENS – A coupled hydrodynamical -ecological model for regional and shelf seas: user documentation، MUMM Rep, Management Unit of the Mathematical Models of the North Sea.
Mahmoodian, M. (2013). Suspendedsediment distribution based on tidal phasesIn estuaries the Arvand, M.Sc Thesis Department of Physical Oceanography Khorramshahr University of Marine Science & Technology.
Organization for Management and Planning of the Country (2007). Guidelines for erosion and sediment studies in river Organizing, Center for Scientific Documents, Journal Number of 383.
Rostaei, Sh.; Rasoli, A.K. and Ahmadzadeh, H. (2010). Erosion and sedimentation basin modeling using satellite data ghaleh chay Ajabshir in GIS, Journal of Geography and Development, Summer 1389, 8(18): 159-178.
Shen, H.W. (1971). River mechanics, fort collins, Colorado, U.S.A.
Shersta, M.K. (2001). Soil erosion modeling using remote sensing and GIS, Case study of Jhikhu Khola watershed, Nepal.
Simons, D.B. and Senturk, F. (1992).Sediment transport technology, Book Crafters Inc., Chelsea, Michigan, USA.
Thorn, C.R.; Bathurst, J.C. and Hey, R.D. (1987). Sediment transport in gravel-bed rivers, John Wiley sons, New York.
Zahiri, A.; Shahinezhad, B. and Rostami, S. (2009). Karun river sedimentation simulation using mathematical models GSTARS 2.0 (hydrometric stations in Ahvaz between the Farsiat), Journal of Soil and Water Conservation preceding studies (Agricultural Sciences and Natural Resources), 16(4): 25-42.
Volume 50, Issue 2
July 2018
Pages 207-219
  • Receive Date: 17 January 2017
  • Revise Date: 23 November 2017
  • Accept Date: 10 December 2017
  • First Publish Date: 22 June 2018