زارع چاهوکی، م.ع. (1389). تجزیه و تحلیل دادهها در پژوهشهای منابع طبیعی با نرمافزار SPSS، انتشارات جهاد دانشگاهی، واحد تهران.
AghaKouchak, A.; Norouzi, H.; Madani, K.; Mirchi, A. ; Azarderakhsh, M.; Nazemi, A. and Hasanzadeh, E. (2015). Aral Sea syndrome desiccates Lake Urmia: call for action, Journal of Great Lakes Research, 41(1): 307-311.
Ahmady-Birgani, H.; McQueen, K. G. and Mirnejad, H. (2018a). Characteristics of mineral dust impacting the Persian Gulf. Aeolian Research, 30, 11-19.
Ahmady-Birgani, H.; Agahi, E.; Ahmadi, S.J. and Erfanian, M. (2018b). Sediment Source Fingerprinting of the Lake Urmia Sand Dunes, Scientific reports, 8(1): 206.
Ahmady-Birgani, H.; McQueen, K.G.; Moeinaddini, M. and Naseri, H. (2017). Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran, Scientific Reports, 7(1): 1523.
Ahmady-Birgani, H.: Mirnejad, H.; Feiznia, S. and McQueen, K.G. (2015). Mineralogy and geochemistry of atmospheric particulates in western Iran, Atmospheric Environment, 119: 262-272.
Alewell, C.; Birkholz, A.; Meusburger, K.; Schindler Wildhaber, Y. and Mabit, L. (2016). Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland), Biogeosciences, 13(5): 1587-1596.
Bagnold, R.A. (1941). The physics of blown sand and desert dunes, Methuen press.
Chen, F.; Fang, N. and Shi, Z. (2016). Using biomarkers as fingerprint properties to identify sediment sources in a small catchment, Science of the Total Environment, 557: 123-133.
Collins, A.L.; Pulley, S.; Foster, I.D.; Gellis, A.; Porto, P. and Horowitz, A.J. (2017). Sediment source fingerprinting as an aid to catchment management: a review of the current state of knowledge and a methodological decision-tree for end-users, Journal of environmental management, 194: 86-108.
Collins, A.L.; Zhang, Y.S.; Duethmann, D.; Walling, D.E. and Black, K.S. (2013). Using a novel tracing‐tracking framework to source fine‐grained sediment loss to watercourses at sub‐catchment scale, Hydrological Processes, 27(6): 959-974.
Collins, A.L.; Zhang, Y.; McChesney, D.; Walling, D.E.; Haley, S.M. and Smith, P. (2012). Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling, Science of the Total Environment, 414: 301-317.
Collins, A.L.; Walling, D.E.; Webb, L. and King, P. (2010). Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information, Geoderma, 155(3): 249-261.
Collins, A.L.; Walling, D.E.; Sichingabula, H.M. and Leeks, G.J.L. (2001). Suspended sediment source fingerprinting in a small tropical catchment and some management implications, Applied Geography, 21(4): 387-412.
Collins, A.L.; Walling, D.E. and Leeks, G.J.L. (1998). Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers, Earth surface processes and landforms, 23(1): 31-52.
Collins, A.L.; Walling, D.E. and Leeks, G.J.L. (1997a). Use of the geochemical record preserved in floodplain deposits to reconstruct recent changes in river basin sediment sources, Geomorphology, 19(1-2): 151-167.
Collins, A.L.; Walling, D.E. and Leeks, G.J.L. (1997b). Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique, Catena, 29(1): 1-27.
Collins, A.L.; Walling, D.E. and Leeks, G.J.L. (1996). Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn River basins, United Kingdom, Géomorphologie: relief, processus, environnement, 2(2): 41-53.
Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P. and Ritsema, C.J. (2016). The threat of soil salinity: A European scale review, Science of the Total Environment, 573: 727-739.
Da Silva, M.T.; De Oliveira Pereira, J.; Vieira, L.J.S. and Petry, A.C. (2013). Hydrological seasonality of the river affecting fish community structure of oxbow lakes: A limnological approach on the Amapá Lake, southwestern Amazon, Limnologica-Ecology and Management of Inland Waters, 43(2): 79-90.
Du, P. and Walling, D.E. (2017). Fingerprinting surficial sediment sources: Exploring some potential problems associated with the spatial variability of source material properties, Journal of environmental management, 194: 4-15.
Evrard, O.; Laceby, J.P.; Huon, S.; Lefèvre, I.; Sengtaheuanghoung, O. and Ribolzi, O. (2016). Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source dynamics in tropical, ephemeral riverine systems, Journal of soils and sediments, 16(3): 1130-1144.
Foster, I.D.; Lees, J.A.; Owens, P.N. and Walling, D.E. (1998). Mineral magnetic characterization of sediment sources from an analysis of lake and floodplain sediments in the catchments of the Old Mill reservoir and Slapton Ley, South Devon, UK, Earth Surface Processes and Landforms, 23(8): 685-703.
Gholami, H.; Telfer, M.W.; Blake, W.H. and Fathabadi, A. (2017). Aeolian sediment fingerprinting using a Bayesian mixing model, Earth Surface Processes and Landforms.
Hatfield, R.G. and Maher, B.A. (2009). Fingerprinting upland sediment sources: Particle size‐specific magnetic linkages between soils, lake sediments and suspended sediments, Earth Surface Processes and Landforms, 34(10): 1359-1373.
Horowitz, A.J. (1991). Primer on sediment-trace element chemistry, Lewis Publishers.
Hu, G.; Yu, L.; Dong, Z.; Jin, H.; Luo, D.; Wang, Y. and Lai, Z. (2017). Holocene aeolian activity in the Headwater Region of the Yellow River, Northeast Tibet Plateau, China: A first approach by using OSL-dating, Catena, 149: 150-157.
Klassen, J. and Allen, D.M. (2017). Assessing the risk of saltwater intrusion in coastal aquifers, Journal of Hydrology.
Lamba, J.; Karthikeyan, K.G. and Thompson, A.M. (2015). Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting, Geoderma, 239: 25-33.
Juracek, K.E. and Ziegler, A.C. (2009). Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA, International Journal of Sediment Research, 24(1): 108-125.
Liu, B.; Niu, Q.; Qu, J. and Zu, R. (2016). Quantifying the provenance of aeolian sediments using multiple composite fingerprints, Aeolian Research, 22: 117-122.
Nosrati, K.; Govers, G.; Ahmadi, H.; Sharifi, F.; Amoozegar, M.A.; Merckx, R. and Vanmaercke, M. (2011). An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints?, International Journal of Sediment Research, 26(2): 136-151.
Oldfield, F.; Hao, Q.; Bloemendal, J.A.N.; GIBBS‐EGGAR, Z.O.Ë.; Patil, S. and Guo, Z. (2009). Links between bulk sediment particle size and magnetic grain‐size: general observations and implications for Chinese loess studies, Sedimentology, 56(7): 2091-2106.
Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C. and Dörfliger, N. (2016). Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France), Science of The Total Environment, 566: 398-415.
Smith, H.G. and Blake, W.H. (2014). Sediment fingerprinting in agricultural catchments: a critical re-examination of source discrimination and data corrections, Geomorphology, 204: 177-191.
The drying of Iran’s Lake Urmia and its environmental consequences Article reproduced from United Nations Environment Programme (UNEP) Global Environmental Alert Service (GEAS) (2012).
United Nation Convention to Combat Desertification Report (UNCCD Report) (2015). 1-48.
Walling, D.E.; Owens, P.N.; Waterfall, B.D.; Leeks, G.J. and Wass, P.D. (2000). The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK, Science of the Total Environment, 251: 205-222.
Yang, L.; Wang, T.; Long, H. and He, Z. (2017). Late Holocene dune mobilization in the Horqin dunefield of northern China, Journal of Asian Earth Sciences, 138: 136-147.
Yang, X.; Scuderi, L.; Paillou, P.; Liu, Z.; Li, H. and Ren, X. (2011). Quaternary environmental changes in the drylands of China–a critical review, Quaternary Science Reviews, 30(23): 3219-3233.
Zare Chahooki, M.A. (2010). Data analysis in natural resources research using SPSS software, Jahad Daneshgahi Publishers.
Zhang, X.J. and Liu, B.L. (2016). Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction, Geoderma, 268: 108-118.
Zhao, H.L.; Zhou, R.L.; Zhang, T.H. and Zhao, X.Y. (2006). Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China, Soil and Tillage Research, 87(2): 175-185.