Factors Affecting Hydrodynamics of Arvandrud Delta Coastline during 1955-2016

Document Type : Full length article

Authors

1 PhD Student of Geomorphology, Tarbiat Modares University, Iran

2 Professor of Geomorphology, Faculty of Geography, University of Tehran, Iran

3 Assistant professor of Sedimentology, Institute of Earth Sciences, National Cartographic Center of Iran

4 Assistant Professor of Geomorphology, Humanities Faculty, Tarbiat Modares University, Iran

5 Professor of Climatology, Humanities Faculty, Tarbiat Modares University, Iran

Abstract

Introduction
A shoreline is defined as the line of contact between land and a body of water. The most effective processes on the changes of coastal morphology are wind, wave, marine current, tides and human activity. Prodelta of Arvandrud delta, as the largest delta of the Persian Gulf, has very low slope in foreshore. Historical data of the last 60 years show that the shoreline experienced transgression and degradation several times. The aim of this study is to assess shoreline displacement rate and the factors affecting that.
Materials and methods
In order to gain an understanding of the effective factors on shoreline changes, we have analyzed flow rate and sedimentary changes of Ahvaz (Karun) hydrometric stations statistics, area tidal data, wave rose, wind rose and current rose statistics. To determine the spatial and temporal changes in the shoreline, we have also used Cartosat (2011) and Landsat (1973, 1982, 1994, 2002, and 2016) satellite imagery and aerial photographs (2016). To calculate the rate of the shoreline changes, DSAS (Digital Shoreline Analysis System) method was used. In this study, upper limit of tidal zone (Diurnal) was selected as shoreline for all time periods.  
Results and discussion
Shoreline position in periodic changes in the years 1955-2016 show that shoreline has had progradation in most areas. Increases in 3.98 km during the last 60 years indicate this sedimentation rate in shoreline. Shoreline progradation, has been notable at the mouth of the Arvandrud. Recent progress is related to the period 1955 - 1973. Relatively stable parts are mostly in the east part of the area. These areas have been the old mouths of Karun River, which has been now converted into estuary. The speed of dominant wind is 3.5 m/s and frequency is 62%. Since the direction of dominant winds of the region are northwest, wind factor can’t play an effective role on the shoreline morphology changes of this region. The directions of dominant waves also are from the NW. About 72% of the wave’s heights are at 0.02- 0.99 meters. Only affective waves in this area are those with southwest and south east (diagonal) directions. These waves, according to the frequency and lower height, have the longest distance from the shore. The directions of marine currents are from NW-SE in this area. This current carries water and sediment of Arvandrud and Bahmanshir rivers from east to west. More than 51% of the marine flows have the velocity about 0 - 0.05 cm/s that can affect shoreline morphology. The results can also show the level of the tide in this area of the Persian Gulf (except Khore Musa) at its maximum. The maximum and minimum heights of sea water are 322 cm and 32 cm progress in land (backshore), respectively.  To understand the reasons of the shoreline progress, during dam construction upstream Karun River in Ahvaz, especially from 1975 until now, trend of water and sediment discharges into the mouth of Arvandrud has been gradually reduced. In the years of 1973-1955, Karun River has experienced one of the highest peaks of water and sediment flow to the Arvandrud. This has been coincident with the most shoreline progradation. An increase in the flow rate and deposition in this period correspond to the time with less number of built dams on the Karun River in comparison with the next periods.
Conclusion
Dynamics of water and sediment flow transport of Arvandrud to the shoreline has been introduced as the main factor of propagation in this part of Persian Gulf shoreline. Delta-making process had been the largest in the area between the years 1955 to 1973. This progradation has been associated with one of the highest peaks of water and sediment flow to Arvandrud. Marine currents (local scale) with direction of east to west and Coriolis factor with regional scale have played a major role in shaping shoreline convexity and development of spits to the west. The results of this study have been conformed more or less to the findings of Yamani et al (2013) for the period 1977-2005 and Ranjbar and Iranmanesh (2011) for the period 1955-1992. 

Keywords

Main Subjects


ادارة کل مهندسی سواحل و بنادر سازمان بنادر و دریانوردی (1393). ژئومورفولوژی در مدیریت یکپارچة مناطق ساحلی ایران، ج2، سواحل خلیج فارس و دریای عمان.
جودکی، م.؛ عبیات، ا.؛ اژدری، ع.؛ درویشی، ج. و یوسفی، م. (1394). بررسی محیط‏های رسوبی کواترنری در استان خوزستان، سازمان زمین‏شناسی و اکتشافات معدنی کشور، شمارة پرونده 7931.
رامشت، م.ح. (1372). مکانیسم سرعت و جهت آب اروند در ارتباط با پدیدة جزرومد، پژوهش‏های جغرافیایی، 33: 33ـ44.
رنجبر، م. و ایران‏منش، ف. (1390). مورفودینامیک ساحلی و تغییرات دوره‏ای شمال دریا عمان، جغرافیا، 9(31):235ـ245.
فرج‏زاده، م.؛ شایان، س. و شفیعی‏فر، م. (1391). راهنمای مطالعات ریخت‏شناسی دلتاها، معاونت برنامه‏ریزی و نظارت راهبردی ریاست جمهوری- وزارت نیرو، شمارة نشریه 562.
کمیجانی، ف؛ نصرالهی، علی؛ نظری، ن. و ناهید، ش. (1393). تحلیل رژیم باد خلیج فارس با استفاده از داده‏های ایستگاه‏های هواشناسی همدیدی، نیوار، 85-84: 27-44.
موسوی نصر، س. (1390). نیروی کوریولیس، آموزش رشد زمین‏شناسی، 16(3): 13-22.
نوحه‏گر، ا. و حسین‏زاده، م.م. (1390). دینامیک دریا و عوامل مؤثر بر نوسانات تراز دریا در تحول قاعدة دلتاهای شمال تنگة هرمز، جغرافیا و برنامه‏ریزی محیطی، 22 (43): 125-142.
ورناصری قندعلی، ش. و کتابداری م.ج. (1388). تخمین عددی اثر نیروی کوریولیس بر سرعت جریان موازی ساحل (مطالعة موردی مصب رودخانة بهمنشیر)، هشتمین کنگره بین‏المللی مهندسی عمران، 21-23 اردیبهشت، دانشگاه شیراز، ایران.
یمانی، م.؛ مقیمی، ا.؛ معتمد، ا.؛ جعفربیگلو، م. و لرستانی، ق. (1392). بررسی تغییرات سریع خط ساحلی قاعدة دلتای سفیدرود به روش تحلیل نیمرخ‏های متساوی البعد، پژوهش‏های جغرافیای طبیعی، 45(2): 1ـ20.
Abam, T.K.S. (1999). Impact of Dam on the Hydrology of the Niger Delta, Bulletin of Engineering Geology and the Environment, 57(3): 23-251.
Al Bakri, D. (1996). Natural Hazards of Shoreline Bluff Erosion: A Case Study of Horizon View, Lake Huron, Geomorphology, 48(17): 323-337.
Al Tahir, R. and Ali, A. (2004). Assessing landcover changes in the coastal zone using aerial photography, Surveying and Land Information Science, 64(2): 107-112.
Alosairi, Y. and Pokavanich, T. (2017). Seasonal circulation assessments of the Northern Persian Gulf, Marine Pollution Bulletin, 116: 270-290.
Bird, E. (2008). Coastal Geomorphology: an introduction, Hoboken, N.J: Wiley, Second edition, PP. 1-254.
Cracknell, A.P. (1999). Remote sensing techniques in estuaries and coastal zones, an update, International Journal of Remote Sensing, 20(3): 485-496.
Dada, O.A.; Li, G.; Qiao, L.; Ma, Y.; Ding, D.; Xu, J.; Li, P.; Yang, J. (2016). Response of waves and coastline evolution to climate variability off the Niger Delta coast during the past 110 years, Journal of Marine Systems, 160: 64-80.
Directorate General of Coasts and Ports PMO (2014). Geomorphology in Iran Integrated Coastal Zone Management, Volume II: the Persian Gulf and Oman Sea.
Dolan, R.; Fenster, M.S. and Holme, S.J. (1991). Temporal Analysis of Shoreline Recession and Accretion, Journal of Coastal Research, 7(3): 723-744.
El Mrini, A.; Maanan, M.; Anthony, E. and Taaouati, M. (2012). An integrated approach to characterize the interaction between coastal morphodynamics, geomorphological setting and human interventions on the Mediterranean beaches of North- Western Morocco, Applied Geography, 1-2: 344- 351.
Farajzadeh, M., Shayan; S .; Shafieefar, D. (2012). Guideline for Delta of Study Morphology, Office of Deputy for Strategic Supervision Department of Technical Affairs - Ministry of Energy, No.562.
Heyvaert, V.M.A. and Baeteman, C. (2007). Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (southwest Iran), Marine Geology, 242: 83-108.
Himmelstoss, E.A. (2009). DSAS 4.0 Installation Instructions and User Guide.
Joudaki, M.; Abyat, A.; Ajdari, S.; Dervish, J. and Yousefi, M. (2015). Study of Quaternary sedimentary environmens in Khuzestan province, Geological Survey of Iran, No. 7931.
Kamijani, F; Nasrollahi, A; Nazari, N; Nahid, S. (2014). Wind regime of Persian Gulf analysis using data from synoptic stations, Nivar, 85-84: 27-44.
Marfai, M.A.; Almohammad, H.; Dey, S.; Susanto, B. and King, L. (2008). Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia, Environmental Monitoring and Assessment, 142: 297-308.
Mousavi Nasr, S. (2011). Coriolis force, Roshd Magazine (Geology), XVI(3): 13-22.
Moussaid, J.; Ait For a, A.: Zourarah, B.; Maanan, M. and Maanan, M. (2015). Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco, Ocean Engineering, 102: 71-77.
Nohegar, A. and Hossein Zadeh, M.H. (2011). Sea Dynamics and the Factors Affecting Sea Level Fluctuations the Evolution of the Deltas Base in Northern Strait of Hormuz, Geography and Environmental Planning, 22(43): 125-142.
Ramesht, M.H. (1993). The mechanism of Arvandrud speed and direction in relation to the phenomenon of the tide, Geographical Research Quarterly, 33: 44-33.
Ramírez-Cuesta, J.M.; Rodríguez-Santalla, I.; Javier Gracia, F.; Sanchez-García, M.J. and Barrio-Parr, F. (2016). Application of change detection techniques in geomorphological evolution of coastal areas. Example: Mouth of the River Ebro (period 1957-2013), Applied Geography, 75: 12-27.
Ranjbar, M. and Iranmanesh, F. (2011). Coastal morphodynamic and cyclical changes in the north of Oman sea, Geography, IX(31): 245-235.
Reynolds, R. M., 1993, Physical Oceanography of the Persian Gulf, Strait of Hormuz, and the Gulf of Oman – Results from the Mt. Mitchell Expedition, Marine Pollution Bulletin, Vol. 27 : 35-59.
Sherman, D. and Bauer, B.O. (1993). Coastal Geomorphology through the Looking Glass, Geomorphology, 7(2): 225-249.
Su, M.; Yao, P.; Bing Wang, Z.; Kuan Zhang, C. and Marcel Stive, J.F. (2017). Exploratory morphodynamic hindcast of the evolution of the abandoned Yellow River delta, 1578-1855 AD, Marine Geology, 383: 99-119.
Varnaseri e Ghandali, Sh. and Ketabdari, M.J. (2009). Numerical estimate of the Coriolis force effect on the current rate parallel to the shore (Case Study Bahmanshir estuary), eighth International Congress on Civil Engineering, May 21-23, Shiraz University, Iran.
Vita-Finzi, C. (1979). Rates of Holocene folding in the coastal Zagros near Bandar Abbas, Iran, Nature, 278: 632-634.
Walstra, J.; Heyvaert, V.M.A. and Verkinderen, P. (2010). Assessing human impact on the Jarrahi fan development using satellite images: a case-study from Lower Khuzestan (SW Iran), Geodinamica Acta, 23(5-6): 267- 285.
Woodbridge, K.P.; Parsons, D.R.; Heyvaert, V.M.A.; Walstra, J. nad Frostick, L.E. (2016). Characteristics of direct human impacts on the rivers Karun and Dez in lowland south-west Iran and their interactions with earth surface movements, Quaternary International, 392: 315-334.
Yamani, M.; Moghimi, A.; Motamed, A.; Jafarbeglo, M. and Lorestani, Gh. (2013). Fast Shoreline Changes in Sefidrud Delta Using Transects Analyses Method, Physical Geography Research Quarterly, 45(2): 20-1.
Zheng, S.H.; Wu, B.; Wang, K.; Tan, G.; Han, S.H. and Thorne, C.R. (2017). Evolution of the Yellow River delta, China: impacts of channel avulsion and Progradation, International Journal of Sediment Research, 32(1): 34-44.
Zuzek, P.J.; Nairn, R.B. and Thieme, S.J. (2003). Spatial and Temporal Consideration for Calculating Shoreline Change Rates in the Great Lakes Basin, Journal of Coastal Research, 38(2): 125-146.