Application of Morphometric Indices in Optimization of Landslide Susceptibility Zonation Using Probabilistic Methods

Document Type : Full length article


1 PhD Student of Geomorphology, University of Isfahan, Iran

2 Assistant Professor of Geography, Esfahan University, Iran

3 Assistant Professor of Soil Conservation and Watershed Management, Isfahan Agricultural and Natural Resources, Research and Education Center, AREEO, Isfahan, Iran


As a geomorphic hazard, landslide causes great deals of financial damage and casualties every year, and directly and/or indirectly contributes to large economic losses in different areas. Given that numerous factors contribute to the occurrence of a landslide, in order to prepare more accurate zonation maps, it is necessary to use more information layers and evaluate various factors possibly leading to the occurrence of the event before adopting the existing models to zonation the susceptibility map. This phenomenon is a natural hazard which is affected by the land surface shape (morphology). When it comes to susceptibility analysis of landslides in a particular area, not only common factors in zonation, but also morphometric features of ground surface are important and should be evaluated. Geomorphometric indices can be used for analysis of many geomorphologic events and natural hazards. These indices express quantitatively characteristics of hillsides which are susceptible to landslide.
Materials and methods
In this research, a total of 18 factors contributing to the occurrence of landslides in Fahlian watershed were identified and evaluated. These factors are including slope, aspect, slope length, altitude, distance to fault, distance to river, precipitation, lithology, landuse, general curvature, Plan curvature, profile curvature, Normalized Difference Vegetation Index (NVDI), topographic position index (TPI), Length and Slope Factor (LSF), Terrain Ruggedness Index (TRI), Stream Power Index (SPI), and topographic wetness index (TWI). In order to prepare the layers of the effective factors, we have used geological maps at scale 1:100,000, topographic maps at scale 1:50,000, Digital Elevation Model (DEM: ASTER), satellite images, and aerial photographs. The data have been analyzed by ArcGIS, Global Mapper, Surfer, and ENVI 4.5 software packages. Given the focus of this research on the application of morphometric indices to optimize zonation map of susceptibility to landslide, the indices were extracted. Land surface characteristics, i.e., morphometric, hydrologic, and climatic properties, etc., and land features including watersheds, stream networks, landforms, etc. were extracted using digital models of ground surface (DEM) and parameterization software. Subsequently, using Dempster-Shafer probabilistic models and the morphometric indices, we have prepared zonation map of landslide susceptibility for Fahlian River watershed. Finally, using receiver operating characteristics (ROC), both models were validated.
Results and discussion
Based on the weights related to the role of each unit of factor layers and their order of priority and importance in the occurrence of landslide, factor maps have been combined to produce landslide distribution maps. The weights of each level have been calculated based on the relationships related to the Dempster-Shafer model in GIS environment. For example, in this study the slope > 40% in weight and imposes the largest contributions into the occurrence of landslide across the watershed. At lower slopes, other forces such as the friction between soil particles and other hillside material are usually dominant over driving forces such as gravity. In contrast, on highly sloping hillsides, due to the dominance of shear stress over resisting force, one may end up with increased probability of the occurrence of a landslide. Moreover, based on the obtained results, with a belief weight of 0.77, TRI > 14 was the second most effective factor on the occurrence of landslides across the studied watershed. Other contributions are as following: Stream Power Index < 1.2, precipitation < 750 mm/year, TPI < -4.2, profile curvature of 0.3 – 4.2, TWI of -1.5 to 2.5, surface curvature of -5 to -2.99, distance to fault from 0 to 500. The Pabdeh – Gurpi have belief function values of 0.68, 0.63, 0.60, 0.57, 0.49, 0.49, 0.47, 0.46, 0.38, and 0.37, in order..
According to the evidence of weight model, the class of TRI >14 (final weight: 2939.32) was found to be the most effective factor on the occurrence of landslide across the region. Following a similar trend of reasoning, the class of slopes higher than 40% (final weight: 2611.21) was the second most important factor, which are in agreement with the results of Javadi et al. (2014) and Teymoori-Yanseri et al. (2017). Moreover, in their research, Pourghasemi et al. (2011) referred to the slope as the second most important factor contributing to the occurrence of landslide. In this model, NVDI > 0.6 (final weight: 400.60) is identified as the third most important factor. Following the land use, Stream Power Index > 1.2, TPI < -4.2, TRI of 7 – 14, profile curvature of 0.1 – 0.3, NVDI of 04 – 0.6, precipitation > 750 mm. The Pabdeh-Gurpi Formation imposed the largest impacts. The impacts are sorted in the order of effectiveness, from final weights of 2037.60, 1925.99, 1803.48, 1793.34, 1722.40, 1494.60, and 1340.28.
Final results of the present research have indicated that, in both of the models, slopes higher than 40% and TRI > 14 exhibited the highest weights and played the most significant roles in the occurrence of landslide across the region. Moreover, based on the obtained results, 82.59% of the landslides across the watershed in an area of 547.82 hectare had occurred in pastures. Based on the results of Dempster-Shafer model, very low, low, intermediate, high, and very high susceptibility classes covered 23.85% (961.34 km2), 31.82% (1282.49 km2), 21.72% (875.63 km2), 16.41% (661.45 km2), and 6.20% (249.97 km2) of the entire region, respectively.
Moreover, the results obtained from the evidence of weight model shows that zones of very low, low, intermediate, high, and very high susceptibility have areas of 25.29% (1019.59 km2), 30.98% (1248.82 km2), 21.28% (857.64 km2), 15.68% (631.93 km2), and 6.77% (272.90 km2) on the entire susceptibility zonation map, respectively.  Results of evaluating the models using ROC documented that the Dempster-Shafer model provides higher prediction accuracy (0.79) than the evidence of weight model (0.76). Given quantitative results of validation, the combination of Dempster-Shafer model with morphometric indices is herein introduced as an appropriate model for landslide susceptibility zonation.


Main Subjects

احمدآبادی، ع. و رحمتی، م. (1394). کاربرد شاخص‏های کمّی ژئومورفومتریک در شناسایی پهنه‏های مستعد زمین‏لغزش با استفاده از مدل SVM (مطالعۀ موردی: آزادراه خرم‏آباد- پل‏زال)، پژوهش‏های ژئومورفولوژی کمّی، 4(3): 197-213.
انصاری، م. و فتوحی، ص. (1396). بررسی دوره‏های ترسالی و خشک‏سالی و اثرات آن بر منابع آب زیرزمینی دشت ممسنی، فصل‏نامة جغرافیای طبیعی، 10(36): 73-87.
بابلی ‏مؤخر، ح.؛ شیرانی، ک. و تقیان، ع. (1397). کارایی تئوری بی‏نظمی سامانه‏های طبیعی در پهنه‏بندی حساسیت زمین‏لغزش (مطالعۀ موردی: حوضة آبخیز رودخانۀ فهلیان)،فصل‏نامة علوم زمین، 28(109): 187-200.
بهاروند، س. و سوری، س. (1394). پهنه‏بندی خطر زمین‏لغزش با استفاده از روش شبکة عصبی مصنوعی (مطالعۀ موردی: حوضۀ سپیددشت، لرستان)، سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، 6(4): 15-31.
پورقاسمی، ح.ر.؛ مرادی، م.؛ فاطمی‏ عقدا، س.‏م.؛ مهدوی‏فر، م.‏ر. و محمدی، م. (1390). ارزیابی عوامل ژئومورفولوژیکی و زمین‏شناسی در تهیة نقشة خطر زمین‏لغزش با استفاده از منطق فازی و روش تحلیل سلسله‏مراتبی (مطالعة موردی: بخشی از حوضة آبخیز هراز)، مجلة پژوهش‏های حفاظت آب و خاک، 18(4): 1-20.
تیموری ‏یانسری، ز.؛ حسین‏زاده، ر.؛ کاویان، ع. و پورقاسمی، ح.‏ر. (1396). تعیین پهنه‏های حساس به وقوع لغزش با استفاده از روش آنتروپی شانون (مطالعة موردی: حوضة چهاردانگه- استان مازندران)، جغرافیا و مخاطرات محیطی، (22): 183-204.
جداری‏ عیوضی، ج. (1381). ژئومورفولوژی ایران، تهران: انتشارات دانشگاه پیام نور.
جوادی، م.؛ صدیقی، م. و شعبان‏علی، غ. (1393). ارزیابی کارایی مدل‏های آماری ارزش اطلاعاتی و رگرسیون ‏لجستیک در تهیۀ نقشۀ حساسیت به وقوع زمین‏لغزش در زیرحوضۀ پهنه‏کلا، مجلۀ پژوهش‏های ‏خاک (علوم آب و خاک)، 28(1): 153-162.
روستایی، ش.؛ خدایی‏ قشلاق، ل. و خدایی‏قشلاق، ف. (1393). ارزیابی روش‏های تحلیل شبکه (ANP) و تحلیل چند‏معیارۀ مکانی در بررسی پتانسیل وقوع زمین‏لغزش در محدودۀ محور و مخزن سدها (مطالعۀ موردی: سد قلعه‏چای)، پژوهش‏های جغرافیای طبیعی، 46(4): 495-508.
شیرانی، ک. (1397). ارزیابی کارایی عوامل ژئومورفومتریک در افزایش درستی نقشه‏های پهنه‏بندی حساسیت زمین‏لغزش (مطالعة موردی: حوضة دزعلیا، استان اصفهان)، مجلة جغرافیا و برنامه‏ریزی محیطی دانشگاه اصفهان، 29(3): 111-130.
سپهر، ع.؛ بهنیافر، ا.؛ محمدیان، ع. و عبدالهی، ا. (1392). تهیۀ نقشۀ حساسیت‏پذیری زمین‏لغزش دامنه‏های شمالی بینالود بر پایۀ الگوریتم بهینه‏سازی توافقی ویکور، پژوهش‏های ژئومورفولوژی کمّی، 2(1): 19-36.
صمدی، م.؛ جلالی، س.؛ کرنژادی، آ. و صمدی ‏قشلاق‏چایی، م. (1395). بررسی شاخص‏های مورفومتری در حوضة آبخیز چهل‏چای استان گلستان بااستفاده از GIS، مجلة علمی- ترویجی مهندسی نقشه‏برداری و اطلاعات ‏مکانی، 7(4): 67-74.
عابدینی، م.؛ روستایی، ش. و فتحی، م. (1395). پهنه‏بندی حساسیت وقوع زمین‏لغزش با استفاده از مدل هیبریدی قضیة بیز-ANP  (مطالعة موردی: کرانة جنوبی حوضة آبریز اهرچای از روستای نصیرآباد تا سد ستارخان)، پژوهش‏های ژئومورفولوژی کمّی، 5(1): 142-159.
عابدینی، م. و فتحی، م. (1393). پهنه‏بندی حساسیت خطر زمین‏لغزش در حوضة آبخیز خلخال‏چای با استفاده از مدل‏های چندمعیاره، پژوهش‏های ژئومورفولوژی کمّی، 2(4): 71-85.
عرب‏عامری، ع.؛ شیرانی، ک. و رضایی، خ. (1396). پهنه‏بندی استعداد اراضی نسبت به‏ وقوع زمین‏لغزش با روش‏های دمپسترشیفر و نسبت فراوانی در حوضۀ سرخون کارون، نشریة پژوهش‏های حفاظت آب و خاک، 24(3): 41-57.
عرب‏عامری، ع. و شیرانی، ک. (1395). اولویت‏بندی عوامل مؤثر بر وقوع زمین‏لغزش و پهنه‏بندی خطر آن با استفاده از تئوری احتمالاتی دمپسترشفر، مطالعة موردی: حوضة ونک سمیرم، استان اصفهان، نشریة علمی- پژوهشی مهندسی و مدیریت آبخیز، 8(1): 93-106.
محمدنژاد آروق، و. و اصغری ‏سراسکانرود، ص. (1395). ارزیابی خطر زمین‏لغزش با استفاده از روش‏های آماری در حوضة آبریز باراندوزچای، پژوهش‏های ژئومورفولوژی کمّی، 4(4): 181-191.
مختاری‏ اصل، ا. و رنجبریان ‏شادباد، م. (1395). ارزیابی و پهنه‏بندی احتمال خطر زمین‏لغزش در حوضۀ آبریز یایجیلو با مدل AHP، پژوهش‏های ژئومورفولوژی کمّی، 4(4): 119-133.
مقیمی، ا.؛ باقری ‏سیدشکری، س. و صفرراد، ط. (1391). پهنه‏بندی خطر وقوع زمین‏لغزش با استفاده از مدل آنتروپی (مطالعۀ موردی: تاقدیس نسار زاگرس شمال‏غربی)، پژوهش‏های جغرافیای طبیعی، (79): 77-90.
مکرم، م. و نگهبان، س. (1393). طبقه‏بندی لندفرم‏ها با استفاده از شاخص موقعیت توپوگرافی (TPI) (مطالعة موردی: منطقة جنوبی شهرستان داراب)، فصل‏نامة علمی- پژوهشی اطلاعات جغرافیایی، 23(92): 57-65.
ملکی، ا.؛ احمدی، م. و میلادی، ب. (1391). شبیه‏سازی مناطق مستعد خندق‏زایی با استفاده از روش SPI در حوضۀ رودخانۀ مِرِگ، پژوهش‏های ژئومورفولوژی کمّی، (3): 23-38.
منصوری، م. و شیرانی، ک. (1395). پهنه‏بندی خطر زمین‏لغزش به روش‏های آنتروپی و وزن شاهد (مطالعة موردی: منطقة دوآب ‏صمصامی استان چهارمحال و بختیاری)، علوم زمین، 26(102): 267-280.
یمانی، م.؛ مقامی‏ مقیم، غ.؛ عرب‏عامری، ع. و شیرانی، ک. (1396). ارزیابی مدل ترکیبی نوین به منظور افزایش دقت تهیة نقشه‏های حساسیت زمین‏لغزش با تأکید بر مدل رگرسیون وزنی جغرافیایی (GWR) (مطالعة موردی: حوضة دز علیا، استان اصفهان)، پژوهش‏های ژئومورفولوژی کمّی، 26(102): 19-40.
یوسفی، ط. (1389). معرفی گسل عامل زلزله‏های دی‏ماه 1389 منطقة نورآباد ممسنی، سازمان زمین‏شناسی و اکتشافات معدنی کشور، مدیریت زمین‏شناسی و اکتشافات معدنی منطقة جنوب (شیراز).
Abedini, M, Roustaei, S.H and Fathi, M. (2016). Landslide susceptibility zoning using the hybrid-based Bayesian-ANP (Case study: Southern Cone of Aharchay catchment area from Naseerabad Village to Sattarkhan Dam), , Journal of Quantitative geomorphology research, 5(1): 142-159. (in Persian).
Abedini, M, and Fathi, M .(2014). Landslide hazard sensitivity zoning in Khalkhal tea basin using multi-criteria models, , Journal of Quantitative geomorphology research, 2(4): 71-85. (in Persian).
Ahmadabadi, A., A. Rahmati. (2015). Application of geomorphometeric quantity indices for prone to landslide and its susceptibility zonation using SVM model, case study khoramabad- Zal freeway, Journal of   Quantitative geomorphology research, 4(3): 197-213. (in Persian).
Ansari, M and Fotohi, S.(2017). Study of wet and dry periods and its effects on groundwater resources of Mamsani plain, Natural Geography Quarterly, 10(36): 73-87. (in Persian).
Arabameri, A, Shirani, K and Rezaei, Kh. (2017). Landslide land capability zonation usingDempster-shafer and frequency ratio models, Journal of Water and Soil Conservation Research, 24(3): 41-57. (in Persian).
Arabameri, A,  and Shirani, K. (2016). Prioritization of Factors Affecting Landslide occurrence and its hazard zonation using Dempterscher's probabilistic theory, Case Study: Vanak Semirom Basin, Isfahan province, Journal of Engineering and Watershed Management, 8(1): 93-106. (in Persian).
Akgun, A. and Turk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis, Environ. Earth. Sci., 61: 595-611.
Babolimoakher, H, Shirani, K and Taghian, A.(2018). Performance of Chaos theory on natural systems in landslide Susceptibility zonation (case study: Fahlian river basin, Geosciences Quarterly, 28(109): 187-200. (in Persian).
Baharvand, S and souri, S. (2016). Landslide hazard zonation using Artificial Neural Network (Case Study: Sepid Dasht Basin, Lorestan), Remote Sensing and Geographic Information Systems in Natural Resources, 6(4): 15-31. (in Persian).
Chen, W.; Pourghasemi, H.R. and Zhao, Z. (2016). A GIS-based comparative study of Dempster-Shafer, Logistic regression and artificial neural network models for landslide susceptibility mapping, Geocarto International, 32: 367-385. DOI: 10. 1080/10106049.2016.1140824.
Chung, C. and Fabbri, A. (2003). Validation of Spatial prediction models for Landslide hazard mapping, Natural Hazards, 30: 451-472.
Demir, G.; Aytekin, M.; Akgun, A.; Ikizler, S.B. and Tatar, O. (2012). A comparison of Landslide Susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by Likelihood-frequency ratio and analytic hierarchy process method, Natural Hazards, Published online, DOI 10.1007/s11069-012-0418-8.
Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38: 325-339.
Fisher, P.; Wood, J. and Cheng, T. (2004). Where is Helvellyn? Fuzziness of Multiscal Landscape Morphometry, Transactions of the Institute of British Geograhper, 29: 106-128.
Frattini, P.; Crosta, G. and Carrara, A. (2010). Techniques for evaluating the Performance of Landslide susceptibility models, Engineering Geology, 111: 62-72.
Gorum, T.; Gonencgil, B.; Gokceoglu, C. and Nefeslioglu, H.A. (2008). Implementation of reconstructed geomorpholog icunitsin landslide susceptibility mapping:the Melen Gorge(NWTurkey), Natural Hazards, 46: 323-351.
Guo, C.; Montgomery, D.R.; Zhang, Y.; Wang, K. and Yang, Z. (2015). Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China, Geomorphology, 248: 93-110.
Guzzetti, F.; Reichenbanch, P.; Ardizzone, F.; Cardinali, M. and Galli, M. (2006). Estimating the quality of Landslide susceptibilijy models, Geomorphology, 81: 166-184.
Hoseinpour Milaghardan, A.; Delavar, M. and Chehreghan, A. (2016). Uncertainty in landslide occurrence prediction using Dempster–Shafer theory, Model. Earth Syst. Environ, DOI 10.1007/s40808-016-0240-5
Hong, H.; Haghibi, S.A. and Pourghsemi, H.R. (2016). GIS- based landslid Spatial Modeling in Ganzhou City, China, Arab J. Geosci Journal, 9: 112.
Javadi, M, Seddighi, M and Shaabanali, G. (2014). Evaluation of the Efficiency of Statistical Models of Information Values ​​and Logistic Regression in the Preparation of Landslide Sensitivity Map in the Subbasin of Kala Area, Soil Science Journal (Water and Soil Science), 28(1): 153-162. (in Persian).
Jedari eyvazi, J. (2002). Geomorfology of Iran, Tehran, Payame Noor University Press. (in Persian).
Jenness, J. (2002). Surface Areas and Ratios from Elevation Grid, Jenness Enterprises, http:// www. Jennessent. Com/arcview/surface_areas. Htm(connected: 10.08.2003).
Lacasee, S. and Nadim, F. (2009). Landslide risk assessment and mitigation strategy, Landslide-Disaster risk reduction, Springer, 12, 31-61.
Lee, S. and Choi, J. (2004). Landslide susceptibility mapping using GIS and the Weight-of-evidenc model, Intl. J. Geography. Information. Science., 18(8): 789-814.
Maleki, A, Ahmadi, M and Miladi, B. (2012). Simulation of Gally areas using the SPI method in the Merg river basin, Journal of Quantitative geomorphology research, (3): 23-38. (in Persian).
Mansori, M and Shirani, K. (2016). Landslide hazard zonation by entropy and control weight (Case study: DoAb Smassi area of ​​Chaharmahal and Bakhtiari province), Geosciences Quarterly, 26(102): 267-280. (in Persian).
Moghimi, E, Bagheri Sayedshokri, S and Safar Rad, T. (2012) Landslide hazard zonation using Entropy model (Case study: Nessar anticlinal northern Zagros), Journal of Natural Geography Researches. 79:77-90. (in Persian).
Mohammadnegad Arogh, V and Asghari Serascanroud, S. (2016). Landslide hazard assessment using statistical methods in Barandozchiye catchment basin, , Journal of Quantitative geomorphology research, 4(4): 181-191. (in Persian).
Mokarram, M and Negahban, S. (2014). Classification of Landforms Using the Topographic Position Index (TPI) (Case Study: Southern District of Darab City), Quarterly Journal of Geographic Information. 23(92): 57-65. (In Persian).
Mokhtariasl, A and Ranjbariyan Shadbad, M. (2016). Landslide risk zonation and assessment using AHP Model in Bajillo basin, Journal of Quantitative geomorphology research, 4 (4): 119-133. (in Persian).
Moore, I.D.; Gessler, P.E. and Peterson, G.A. (1993). Soil attributes prediction using terrain analysis, Soil Sci. Society American J., 57(2): 443-452.
Pourghasemi, H. R., H. R. Moradi, S. M. Fatemi Aghda, Mahdavifar, M.R and Mohammadi, M. (2012). Assessment of geomorphologic and geological factors in the preparation of a landslide risk map using fuzzy logic and hierarchical analysis method(Case Study: Part of the watershed of Haraz), Journal of Soil and Water Conservation Research, 18(4): 1-20. (in Persian).
Pourghasemi, H.; Pradhan, B.; Gokceoglu, C. and Deylami Moezzi, K. (2013). A comparative Assessment of prediction Capabilities of Dempster-Shafer and Weights-of-Evidence Models in Landslide Susceptibility Mapping Using GIS, Geomatics, Natural Hazards and Risk, 4(2): 93-118.
Pourghasemi, H.R.; Mohammady, M. and Pradhan, B. (2012). Lanslide Susceptibility mapping using index of entropy and Conditional probability models in GIS. Safarood Basin, Iran, Catena, 97: 71-84.
Pourghasemi, H.R.; Moradi, H.R.; Fatemiaghda, S.; Gokceoglu, C. and Pradhan, B. (2014). GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran), Arabian Journal of Geosciences, 7(5): 1857-1878.
Pike, R.J. (2000). Geomorphology-Diversity in quantitative surface analysis, Progress in Physical Geography, 24: 1-20.
Regmi, N.R.; Giardion, J.R. and Vitek, J.D. (2010). Modeling Susceptibility to Landslides using the Weight of evidence approach: Western Colorado, USA, Geomorphology, 115: 172-187.
Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T. and Akgun, A. (2014). Application of frequency ratio, statistical index, and weight-of-evidence models and their comparison in landslide susceptibility mapping in central Napal Himalaya, Arabian Journal of Geosciences, 7(2): 725-742.
Riley, S. J., S. D. DeGloria, and R. Elliot. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5:1–4.
Romer, C. and Ferentinou, M. (2016). Shallow landslide susceptibility assessment in a semiarid environment-A Quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201: 29-44.
Roustaei, S.H, Kodaeigheshlagh, L and Kodaeigheshlagh, F.(2014). Evaluation of Network Analysis (ANP) and Multi-criteria Localization Analysis in the Study of Land Landing Potential in the Damage Axis and Retention Area (Case Study: Qaleh Chay Dam), Natural Geography Research, 46(4): 495-508. (in Persian).
Rozos, D.G.; Bathrellos, D. and Skillodimou, H.D. (2011). Comparision of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environmental. Earth Science, 63: 49-63.
Samadi, M, Galali, S, Kornezadi, I,  and Samadi Gheshlaghchaei, M. (2016). Investigation of morphometric indices in Chehelchay watershed in Golestan province using GIS, Scientific Journal of Promotion Geodetic Engineering and Spatial Information.  67-74. (In Persian).
Shafer, G. (1976). A mathematical theory of evidence, Princeton University Press, 254 P.
Sepehr, A, behniafar, A, Mohamadiyan, A and Abdolahi, A. (2013). Preparation of Landslide Susceptibility Scheme for Binalood North Slopes Based on Vicover's Aggregation Optimization Algorithm, , Journal of Quantitative geomorphology research, 2(1): 19-36. (in Persian).
Shirani, K.; Pasandi, M. and Arabameri, A. (2018). Landslide susceptibility assessment by Dempster-Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran, Natural Hazards, DOI : 10.1007/s11069-018-3356-2.
Shirani, K. (2018). Evaluation of the efficiency of geomorphometric factors in increasing the accuracy of landslide susceptibility zoning maps (Case study: Dezaliya basin, Isfahan province), Journal of Geography and Environmental Planning, University of Isfahan, 29(3): 111-130. (in Persian).
Song, Y.; Gong, J.; Gao, S.; Wang, D.; Cui, T.; Li, Y. and Wei, B. (2012). Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China, Computers & Geosciences, 42: 189-199.
Swets, J.A. (1988). Measuring the accuracy of diagnostic systems, Sci., 240: 1285-1293.
Taymori yansari, Z, Hosainzadeh, R, Kaviyan, A and Pourghasemi, H.R. (2017).  RDetermination of landslide sensitive zones using Shannon entropy method (Case study: Chardandange basin - Mazandaran province), Geography and environmental hazards, (22): 183-204. (in Persian).
Terzaghi, K. (1950). Mechanisms of Landslides, Geotechnical Society of America, Berkeley, pp. 83-125.
Yamani, M, Maghamimoghim, g, Arabameri, A and Shirani, K. (2017). Evaluation of the new hybrid model to increase the accuracy of landslide susceptibility mapping with an emphasis on GWR (Case study: Daz Olya Basin, Isfahan Province), , Journal of Quantitative geomorphology research, 26(102): 19-40. (in Persian).
Yosefi, T.(2010). The introduction of the Operating fault of the earthquake in the area of ​​Norabad Mamasani, Geological Survey of Iran, Geological Survey and Mineral Exploration of the Southern Region (Shiraz). (in Persian).
Vakhshoori, V. and Zare, M. ( 2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzylogic, and frequency ratio methods, Geomatics, Natural Hazards and Risk, 7(5): 1731-1752.
Van Western, C.J. (2002). Use of weights of evidence modeling for landslide susceptibility mapping, [lecture notes], Retriered from www. Adpe. Net/casita/casestudies, 21p.
Wan, S. and Chang, S.H. (2014). Combined Particle swarm optimization and linear discriminantanalysis for landslide image classification: Application to a case study in Taiwan Environ, Earth Sci, 72: 1453-1464. Doi: 10. 1007/s12665-014-3050-y.
Wang, Q.; Li, W.; Wu, Y.; Pei, Y.; Xing, M. and Yang, D. (2016). A comparative study on the landslide susceptibility mapping using evidential belief function and weight of evidence models, J. Earth Syst. Sci., 125(3): 646-662.
Wood, J. (1996). Scale-based characterization of digital elevation models, In: Parker, D. Innovations in GIS, Tayler and Francis, London, 163-175.
Yelcin, A. (2008).GIS-based Landslide susceptibility mapping using analytical process and bivariate statistics in Ardesen(Turkey): comparisons of results and confirmations, Catena, 72: 1-12.
Youssef, A. M.; Pourghasemi, H. R.; EI-Haddad, B.A. and Dhahry, B.K. (2016). Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia, Bull Eng Geol Environmental,75: 63-87.