Comparison of Land Use and Climate Change Impacts on Runoff in a Small Mountainous Catchment (Case Study: Garin Dam Catchment)

Document Type : Full length article


1 Assistant Professor of Watershed Management, Malayer University, Malayer, Iran

2 Associate Professor of Watershed Management, Malayer University, Malayer, Iran

3 MS In Watershed Management, Malayer University, Malayer, Iran

4 Assistant Professor of Watershed Management, University of Razi, Kermanshah, Iran

5 Assistant Professor of Watershed Management, University of Lorestan, Khoramabad, Iran


Land use and climate change and its impacts on water resources and hydrological regime have always been the most important problems in recent decades in Iran. These environmental risks will have direct and indirect impacts on health, economy and society by accelerating the hydrological cycle, drought and flood. Some researchers have examined the impacts of climate and land use change on extreme rainfall, runoff and flood events. Water resources have been investigated in different basins using hydrological models and GIS in arid and semi-arid regions via different scenarios and strategies. They have identified a serious increasing trend of extreme rainfall and drought intensity and duration due to land use change and climate change. Western Iran has experienced an agriculture growth and land use change that can alter evaporation patterns and affect the more frequent occurrence of drought and flood extremes largely due to climate change in this mountainous region. Definitely, there is an increasingly notable challenge in management of water resources, prediction of future changes in land use and climate variabilities, and human activities. In a watershed, climate change and human activities both contribute to the hydrological cycle, and this result has been supported by many researches. In this study, climate change scenarios and land use change models are coupled with a hydrological model to study impacts of these changes on runoff in a mountain catchment in western Iran.
Materials and methods
Under the assumption that runoff is affected only by land use and climate changes, the effects of climate changes on runoff were studied using SWAT model. This hydrological model calibrated for the period of 2002 to 2007 and was then validated for the period of 2008 to 2010, and after that it is operated in base (2014) and future (2042) period. The required data are including a Digital Elevation Model (DEM), soil properties, vegetation, land use, climate observations, and discharge observations in Garin dam gauging station. Land use in the Garin Basin was extracted from the Natural Resources Department of Hamadan in 1986. These maps have been produced from Landsat 8 images in 2000 and 2014. Additionally, Land use map has been predicted for 2042 using Markov and CA Markov models based on transition probabilities. Curve number can reflect the capacity of runoff yield for the land cover with a continuous spatial distribution. Based on land use maps of two periods and soil type data of Garin catchment, CN distribution maps in the same periods were obtained with spatial interpolation. To predict the future climate, the HADCM3 model was used and its outputs were scaled up with SDSM model. SDSM Model used for down scaling of rainfall and temperature data obtained in Hadcm3 output for prediction of Garin future climate.
Results and discussion
The SWAT model is performed well in both the calibration and validation periods, accurately simulating the outlet flows according to the model performance criteria after the sensitive parameters were optimized. The simulation coefficients for calibration and validation are presented in Table 1 and 2. The results show that the forest area will be increased and rangeland will be decreased until 2042 (table3). The Result of Markov chain and CA Markov Chain analysis indicate that land use change will make less the runoff rate under A2 and B2 scenarios in 2042. The results reveal that climate change impacts on reduction of runoff is more than land use change during 2042 to 2050 compared with 2000 to 2010.   
Table1. The model criteria in Calibration and validation for discharge simulation in Garin catchment



















Table2. The comparison of the land uses areas in 2014 compared with 2042
















The results of NC, , , MSE, P-factor and R-factor coefficients show that validation was better than calibration  and both reveal that performance of the model is reasonable. It was obvious that climate change with increased precipitation and decreased evaporation caused an increase in runoff in the study area. The results show that if the trend remain stable during 1986 to 2014, the forest area will be increased by 2.28 percent and rangeland will be decreased by 2.07 percent until 2042 and also, mean precipitation will be reduced but mean temperature will be increased. The results indicate that decrease in rangeland and rock land area and increase in forest area result in a reduction in runoff under A2 and B2 scenarios in the future. The output of the SWAT model show that the monthly runoff has decreased in January, February, March, April, May and December and has increased in July, August and September due to the rainfall decrease and increase compared with the base period. Overall, the results show that the effects of climate change on runoff reduction is more than the effects of land use change from 2014 to 2042. The results can be used to improve management of Garin watershed and to focus on soil and vegetation cover damage. Besides, the amount of runoff altered by land use change (6.5%) is lower than the climate change effect (10.7%) in this mountainous catchment. Further research is required to acquire the regional future climate scenarios coupled with the hydrological model of a basin under GCMs (general circulation models) with the downscaling technique, so as to further quantify the relations between runoff and climatic variables. In addition, the space-time distribution of floods and droughts resulted from the runoff change should also be examined to provide scientific framework for basin-scale water resource management.


Main Subjects

ایزدی، م.؛ اژدری، خ.؛ اخوان، س. و امامقلی‏زاده، ص. (1392). کاربرد مدل SWAT در شبیه‏سازی دبی رودخانة شیرین‏دره، اولین همایش ملی چالش‏های منابع آب و کشاورزی، دانشگاه آزاد اسلامی واحد خوراسگان اصفهان، 1-7.
ثانی‏خانی، ه.؛ دین‏پژوه، ی.؛ پوریوسف، س.؛ زمان‏زاده قویدل، س. و صولتی، ب. (۱۳۹۲). بررسی اثرات تغییر اقلیم بر رواناب حوضه‏های آبخیز (مطالعة موردی: حوضة آبخیز آجی‏چای در استان آذربایجان شرقی)، نشریة آب و خاک (علوم و صنایع کشاورزی)، 27(6): ۱۲۲۵ـ1234.
ثقفیان، ب.؛ فرازجو، ح.؛ سپهری، ع. و نجفی‏نژاد، ع. (1385). بررسی اثر تغییر کاربری اراضی بر سیل‏خیزی حوضة آبخیز سد گلستان، تحقیقات منابع آب ایران، 1: 80-90.
جان‏زاده، ر. (1393). بررسی اثر تغییر کاربری اراضی بر رواناب و بار معلق با استفاده از مدل SWAT (مطالعة موردی حوضة آبخیز یلفان)، پایان‏نامة کارشناسی ارشد رشتة مهندسی منابع طبیعی گرایش آبخیزداری، دانشکدة منابع طبیعی و محیط زیست دانشگاه ملایر.
جاویدی اصل، ا.ح. (1390). بررسی تأثیر تغییر اقلیم بر رواناب حوضة آبخیز صوفی‏چای مراغه با استفاده از شبکة عصبی مصنوعی، پایان‏نامة کارشناسی ارشد، دانشگاه تبریز، دانشکدة عمران.
ذهبیون، ب.؛ گودرزی، م. و مساح بوانی، ع. (1389). کاربرد مدل SWAT در تخمین رواناب حوضه در دوره‏های آتی تحت تأثیر تغییر اقلیم، نشریة پژوهش‏های اقلیم‏شناسی، 1(3 و 4): 64-81.
شعبانی حیدرآبادی، م. (1382). بررسی تأثیر کاربری اراضی در رسوب‏دهی حوضه‏های آبخیز (مطالعة موردی: حوضة آبخیز طالقان)، گروه آموزشی احیای مناطق خشک و کوهستانی، دانشکدة منابع طبیعی، دانشگاه تهران.
صمدی، ز.؛ مهدوی، م.؛ شریفی، ف. و بی‏همتا، م. (1388). تأثیر عدم قطعیت روش‏های کوچک‏مقیاس‏کردن آماری- رگرسیونی بر رواناب روداخانه (مطالعة موردی: سراب حوضة آبخیز کرخه)، رسالة دکتری رشتة مهندسی منابع طبیعی‏- آبخیزداری، دانشگاه آزاد اسلامی.
غفاری، گ.؛ قدوسی، ج. و احمدی، ح. (1388). بررسی تأثیر تغییر کاربری اراضی بر پاسخ‏های هیدرولوژی حوضة آبخیز (مطالعة موردی: حوضة آبخیز زنجان‏رود)، مجلةپژوهش‏های حفاظت آب و خاک، 16(1): 163-180.
غلامی، و؛ بشیرگنبد، م.؛ عضدی، م. و جوکار، ع. (1388). بررسی اثر تغییر کاربری اراضی در ایجاد رواناب و خطر سیلاب حوضة آبخیز کسیلیان، مجلة علوم و مهندسی آبخیزداری ایران، 9: 55-57.
فرازجو، ح. (1382). بررسی اثر تغییرات پوشش گیاهی بر هیدروگراف سیل حوضة آبخیز سد گلستان با استفاده ازGIS  و مدل HEC-HMS، پایان‏نامة کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
مساح بوانی، ع. و مرید، س. (1385). ارزیابی ریسک تغییر اقلیم و تأثیر آن بر منابع آب، رسالة دکتری، دانشگاه تربیت مدرس، ص 13-21.
محمدنژاد، و. (1389). کاربرد مدل توزیعی بارش- رواناب و  GISدر بررسی اثر تغییر اقلیم، پایان‏نامة کارشناسی ارشد مهندسی عمران، گرایش آب، دانشکدة فنی دانشگاه تهران.
یزدانی، م. (1390). بررسی اثرات احتمالی تغییر اقلیم بر آب‏های سطحی حوضة آبخیز زاینده‏رود، پایان‏نامة دکتری، دانشگاه اصفهان.
Abbaspour, K.C. (2007). User Manual for SWAT-CUP SWAT Calibration and Uncertainty Analysis Programs, Swiss Federal lnstitute of Aquatic Science and Technology, Eawag. Dubendorf. Switzerland, 95: 1-16.
Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J. and Srinivasan, R. (2007). Modelling hydrology and water quality in the prealpine/ alpine Thur watershed using SWAT, Journal of Hydrology, 333: 413-430.
Arnold, J.G. and Allen, P.M. (1999). Automated methods for estimating baseflow and groundwater recharge from streamflow records, J. American Water Resour, 35(2): 411-424.
Baloch, M.;  Ames, D. and  Tanik, A. (2008). Catchment-Scale Hydrological Response to Climate-Land-Use Combined Scenarios: A Case Study for the Kishwaukee River Basin, Illinois, Physical Geography, 29(1): 79-99.
Bathurst, J.C.; Ewen, J.; Parkin, G.; O’Connell, P.E. and Cooper, J.D. (2004). Validation of catchment models for predicting land-use and climate change. Journal of Hydrology, 287(1): 74-94.
Bass, J.A.B., Blackburn, J.H., Murphy, J.F., Kneebone, N., Gunn, R.J.M., Jones, E. (2007).  The 2006 drought; preliminary assessment of impacts on macro-invertebrates in the Frome, Kennet and Lambourn. Centre for Ecology and Hydrology, Winfrith
Farazjoo, H. (2002). Study of vegetation cover changes effects on flood hydrograph in Golestan dam watershed using GIS and HEC- HMS model.M.S. thesis, University of Gorgan.
Ghafari, G.; Ghodoosi, J. and Ahmadi, H. (2009). Investigation on effects of landuse change on hydrological responses of watershed (Case study: Zanjan River watershed), Water and Soil Researches J., 16(1):163-180.
Gholami, V.; Bashirgonbad, M.; Azodi, M. and Jokar, A. (2009). Investigation on effects of landuse change on runoff and flood risk in Kasilian watershed, Watershed management sciences and engineering, 9: 55-57.
Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goof, B.F.; Kepner, W.G.; Edmands, C.M. and Jones, K.B. (2000). Modeling runoff response to land cover and rainfall spatial variability in semi-arid watershed, Environmental Monitoring and Assessment, 64: 285-298.
Izadi, M.; Agdari, K.; Akhavan, S. and Emamgholizadeh, S. (2013). Discharge simulation using SWAT model in Shirindarreh River. The first national conference of water resources and agriculture problems, Open University of Khorasgan, Isfahan, 1-7.
Janzadeh, R. (2014). Investigation of climate change effect on runoff and sedimentation using SWAT model (Yalfan watershed), M.S. thesis of watershed management. Faculty of Natural Resources. Malayer University.
Javidi asl, A.H. (2011). Investigation of climate change effect on runoff using ANN in Maragheh watershed, M.S. thesis of Tabriz University, 112.
Li, K.Y.; Coe, M.T.; Ramankutty, N. and De Jong, R. (2007). Modeling the hydrological impact of land-use change in West Africa, Journal of Hydrology, 337: 258-268.
Masahbouany, A. and Morid, S. (2006). Evaluation of climate change risk and its effects on water resources, Ph.D thesis, Tarbiat Modarres University, 13-21.
Memarian, H.; Kumar, S.; Talib, J.; Teh Boon Sung, C.; Mahdsood, A. and Abbaspour, K. (2012). Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia, Journal of Geographic Information System, 4: 542-554.
Mohammadnejad, V. (2010). Study of climate change using rainfall-runoff distributed model and GIS, M.S. thesis of water engineering Tehran University.
Palamuleni, L.G.; Ndomba, P.M. and Annegarn, H.J. (2011). Evaluating land cover change and its impact on hydrological regime in Upper Shire river catchment, Malawi, Journal of Regional Environmental Change, 11(4): 845-855.
Refsgaard, J.C. (2007). Hydrological Modelling and River Basin Management, Phd Thesis, Geological Survey of Denmark and Greenland Danish Ministry of the Environment, 90.
Saghafian, B.; Farazjoo, H.; Sepehri, A. and Najafinejad, A. (2006). Study of landuse change effect on flood of Golestan dam watershed, Water Resources Researches of Iran, 1: 80-90.
Samadi, Z.; Mahdavi, M.; Sharifi, F. and Bihamta, M. (2009). Effect of uncertainity of downscaling methods regression-statistics on runoff (Case study: Karkheh basin), Ph.D thesis of natural resources-watershed management, Open University.
Sanikhani, H.; Dinpagoh, Y.; Pouryousef, S.; Ghavidel, S. and Solati, B. (2013). Investigation on effects of climate change on runoff of watersheds (case study: Agy chai), Water and Soil J., 27(6): 1225-1234.
Shaabani Heidari, M. (2003). Study of landuse change effect on sedimentation (Case study: Taleghan basin), Rangeland and watershed management department. Natural resources faculty, Tehran University.
Steele, S.; Lynch, P.; McGrath, R.; Semmler, T.; Wang, SH.; Hanafin, J. and Nolan, P. (2008). The impacts of climate change on hydrology in Ireland, J. Hydrol, 356: 28-45.
Yan, B.; Fang, N.F.; Zhang, P.C. and Shi, Z.H. (2013). Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression) The Case Study: China(, Journal of Hydrology, 484: 26-37.
Yazdani, M. (2011). Investigation on effects of climate change on surface runoff in Zayandehrood, Ph.D thesis, Isfahan University.
Zahbion, B.; Goodarzi, M. and Massah, A. (2010). Runoff estimation using SWAT model under climate change in future, Climatology researches J., 1(3 and 4): 64-81.
Volume 50, Issue 4
January 2019
Pages 775-790
  • Receive Date: 15 January 2016
  • Revise Date: 25 September 2018
  • Accept Date: 25 September 2018
  • First Publish Date: 22 December 2018