Evaluation of WRF Model for Temperature Forecasting and frosting Occurrence in Zayandeh Rud Basin

Document Type : Full length article

Authors

1 PhD Candidate of Climatology, Faculty of Geography and Planning, University of Isfahan, Isfahan, Iran

2 Associate Professor of Natural Geography, Faculty of Geography and Planning, University of Isfahan, Isfahan, Iran

3 Assistant Professor of Water Engineering, University of Shahrekord, Iran

Abstract

Introduction
Occurrence of weather hazards such as freezing, annually late spring frost can create much damage in agricultural section. Programming and decision making with suitable action can decrease damages resulted from weather hazards. Therefore, it is necessary to consider comprehensive and precision of this phenomenon. Nowadays, use of numerical weather prediction (NWP) models and recognition of weather hazards can prevent such damages.
In the recent years, direct numerical weather prediction models can forecast near surface parameters suffering from systematic errors mainly due to the low resolution of the model topography and inaccuracies in the physical parameterization schemes incorporated in the model. On the other hand, verification is a critical component of the development and use of forecasting systems. The verification should play a major role in monitoring the quality of forecasts, providing feedback to developers and forecasters to help improve forecasts, and provide meaningful information to forecast users to apply in their decision-making processes. The purpose of this study is to evaluate the performance of the WRF model for Temperature Forecast and frosting occurrence in Zayandeh Rud Basin.
Materials and methods
The study area of this research is Zayandeh Rud Basin. This Basin geographical coordinates are at 50° 20´ to 52° 24´ eastern longitude and 31° 12´ to 33° 42´ northern latitude.
In this study, for temperature forecasting, we used weather data from 11 meteorological stations near Zayandeh Rud Basin with 1 Km horizontal resolution via the WRF model for late spring frost.  We also used schemes model (KFMYJ and GDMYJ) for simulation. Then, simulated temperatures and the corresponding observed values were evaluated by two methods of point prediction of of 24 and 48 hours of surface temperature (2m). For evaluation­ of forecast models, we employed different indicator functions including Determination coefficient (R2), Root Mean Square Error (RMSE), Mean Square Error (MSE),­­­ Mean Absolute Deviation (MAD), Relative  Error (Error), correlation coefficient (R), Mean­ Bias Error (MBE), Mean Absolute Percentage Error (MAPE), and Mean Square Skill Score(MSSS).  
   
   
 
For the forecasting, ،  and  n  are observed values, forecast values and number of data, respectively. 
Results and discussion  
According to the results, Root Mean Square Error, Adjusted Rsquare and Mean Bias Error for 24-hours temperature simulation are better than 48 and were about 2.8 , 0.88 and 0.48 respectively. The results of output data for 24 with 48 hours indicated that error of 48 hours forecast data is higher than 24 hours. Acceptable relations from the viewpoint of statistical tests (correlation coefficients and coefficient of determination) are between independent variables (WRF model values) and dependent variable (observed values) that is significant in 5% level.
Substantially, the maps of 850mb in the dates of late spring frost occurrence can find out nature of late spring frost that is in radiation or advection. For instance, existence of cold advection on the maps of 850mb is obvious well. Contour lines and isotherm have almost intersected vertically and has created a strong cold advection. It is worth mentioning that whatever condition of Baroclinic (intersection isotherm by contour with good angle) get better and angle of intersection approach the vertical angle, advection is stronger. The existence of cold advection is obvious. We conclude that occurrence of late spring frost in this paper is mostly advectional motions.
Zoning maps of the used indicators show predictions of 24 and 48 hours. The stations have low level rate of model error. The output of the model is nearly proportional to the stations. This indicates that forecast of surface parameters can imply the topography.
Conclusion
Daily temperature was suitable for forecasting in time scale of 24 and 48 hours. Although 24 hours forecast have high accuracy, the verification scores of model in estimation of quantitative temperature in 24 forecasts are better than 48h forecasts.  In addition to accuracy forecast of 2 meters temperature is intense relation in zone topography of the study area. The accuracy of­ the model can estimate plain areas in mountainous areas. The results of this paper indicate that the WRF model forecasts can be used well for Temperature Forecast and frosting occurrences.  

Keywords

Main Subjects


آزادی، م.؛ صوفیانی، م.؛ وکیلی، غ. و قائمی، ه. (1395). مطالعة موردی اثر گوارد داده‏های ایستگاه‏های دیده‏بانی و جو بالا در برون‏داد بارش مدل WRF روی منطقة ایران، مجلة ژئوفیزیک ایران، 10(۲): 110-119.
آزادی، م. و افشاری، ف. (1393). پیش‏بینی عددی دمای دومتری با استفاده از برون‏داد مدل WRF بر روی ایران، دانشگاه هرمزگان.
آزادی، م.؛ شیرغلامی، م.؛ حجام، س. و صحراییان، ف. (1390). پس‏پردازش برون‏داد مدل WRF برای بارندگی روزانه در ایران، تحقیقات منابع ایران، 7(۴): 71-81 .
آزادی، م.؛ جعفری، س.؛ میرزایی، ا. و عربلی، پ. (1387). پس‏پردازش برون‏داد مدل میان‏مقیاس MM5 برای دمای بیشینه و کمینه با استفاده از فیلتر کالمن، مجلة فیزیک زمین و فضا، 34(۱): 45-61.
ارکیان، ف.؛ رنجبر، ع.؛ میرزایی، ا. و دنیادوست، غ. (1394). شبیه‏سازی عددی طوفان‏های تندری توسط مدل WRF (ARW) در تهران، کنفرانس ملی هواشناسی ایران، اردیبهشت 1394، دانشگاه یزد.
ارکیان، ف.؛ مشاطان، ن.؛ کتیرایی بروجردی، پ. و میرزایی، ا. (1393). ارزیابی پیش‏بینی بارش مدل WRF برای بارش‏های سنگین روزانة استان قزوین، شانزدهمین کنفرانس ژئوفیزیک ایران، 23 تا 25 اردیبهشت 1393، ص 22-26.
ایرانمهر، م.؛ پورمنافی، س. و سفیانیان، ع. (1394). پایش اکولوژیکی و بررسی تغییرات مکانی- زمانی پوشش اراضی با تأکید بر مقدار مصرف آب بخش کشاورزی در محدودۀ زاینده‏رود، اکوهیدرولوژی، 2(۱): ۲۳-38.
تقی‏زاده، ا. (1389). بررسی عملکرد مدل‏های منطقه‏ایMM5 ، HRM، و WRF برای پیش‏بینی بارش روی ایران، دانشگاه یزد.
ذوالجودی، م.؛ قاضی میرسعید، م. و سیفری، ز. (1392). بررسی صحت و دقت طرح‏واره‏های مختلف مدل WRF و ارزیابی پیش‏بینی بارش در ایران‏زمین، فصل‏نامة تحقیقات جغرافیایی، 28(۲): شمارة پیاپی 109.
رحمانی، م.؛ محمدی، ع.؛ خاکزار، م.؛ آزادی، م. و معمار جعفری، م. (1394). شبکه‏بندی برون‏داد پس‏پردازش مدل WRF برای کمّیت دمای دومتری روی ایران، طرح پژوهشی پژوهشکده توسعه تکنولوژی.
غلامی، س.؛ قادر، س.؛ خالقی، ح. و غفاریان، پ. (1397). ارزیابی پیش‏یابی میدان باد توسط مدل WRF تحت تأثیر شرایط اولیه و مرزی متفاوت در منطقة خلیج فارس: مقایسه با داده‏‏های همدیدی و ماهواره‏های QuikSCAT و ASCAT، فیزیک زمین و فضا، 44(۱): 227-243.
قرایلو، م.؛ ثابت‏قدم، س. و قادر، س. (1392). امکان‏سنجی پیش‏بینی رخداد آذرخش با استفاده از مدل میان‏مقیاس WRF در منطقۀ ایران، فیزیک زمین و فضا، 42(۱): 213-220.
قرایلو، م.؛ مزرعه فراهانی، م. و علی‏اکبری بیدختی، ع. (1387). بررسی طرح‏واره‏های پارامترسازی همرفت کومه‏ای مدل بزرگ‏مقیاس و میان‏مقیاس، مجلة فیزیک زمین و فضا، 36(۱): 171-192.
یزدان‏پناه، ح.‏ا. (1389). تحلیل‏های آماری در جغرافیا با رویکرد محاسباتی نرم‏افزار SPSS، دانشگاه اصفهان، انتشارات دانشگاه اصفهان.
Arkian, F.; Mashatan, N.; Katiraie Borojerdi, P. and Mirzaei Haji Baghlo, E. (2014). Evaluation of Precipitation Forecasts of WRF Model for daily Heavy Rain in Qazvin Province, Sixteenth of Iran Geophysics onference, May 13-15, PP. 22-26.
Arkian, F.; Ranjbar, A.; Mirazaei, E. and Donyadoost, GH. (2015). The Numerical Simulation of Thunderstorms using ARW-WRF Model in Tehran (ten Case studies), Iran weather of national Conference, May 2015, Yazd University.
Azadi, M. and Afshari, F. (2014). Forecast of 2 meters temperature by output of WRF model over IRAN, University of Hormozgan.
Azadi, M.; Jafari, S.; Mirzaei, E. and Arabli, P. (2008). Post processing of MM5 forecasts for minimum and maximum temperature 5using a Kalman filter, Journal of  the earth and space physics, 34(1): 71-81.
Azadi, M.; Shirgholami, M.R.; Hajjam, S. and Sahraian, F. (2011). WRF Model Output Postprocessing for Daily Precipitation over Iran, Iran-Water Resources Research, 7(3): 71-81.
Azadi, M.; Vakili, GH. and Ghaemi, H. (1395). Case study of The impact of assimilating surface pressure observations stations and upper air in output of WRF model precipitation data in IRAN, Journal of Iranian Geophysics, 10(2): 110-119.
Duan, H.; Li, Y.; Zhang, T.; Pu, Z.; Zhao, C. and Liu, Y. (2018). Evaluation of the Forecast Accuracy of Near-Surface Temperature and Wind in Northwest China Based on the WRF Model, Journal of Meteorological Research, 32(3): 469-490.
Eckel, F.A. and Mass, C.F. (2005). Aspects of effective mesoscale, short-range ensemble forecasting, Wea. Forecasting, 20: 328-350.
Galanis, G. and Anadranistakis, M. (2002). A one-dimensional Kalman filter for the correction of near surface temperature forecasts, Meteoral. Appl., 9: 441-473.
Gharaylou, M.; Mazraeh Farahani, M. and Aliakbari Bidokhti, A. (2010). Review of cumulus convective parameterization schemes in large and meso- scale models, Journal of the Earth and Space Physics, 36(1): 171-192.
Gharaylou, M.; Sabetghadam, S. and Ghader, S. (2013). Feasibility study of lightning event prediction using WRF mesoscale model in Iran, Journal of the Earth and Space Physics, 42(1): 213-220.
Gholami, S.; Ghader, S.; Khaleghi Zavareh, H. and Ghafarian, P. (2018). Verification of WRF wind field hindcast forced by different initial and boundary conditions over the Persian Gulf: Comparison with synoptic data and QuikSCAT and ASCAT satellites data, Journal of the Earth and Space Physics, 44(1): 14.
Homleid, M. (1995). Diurnal corrections of short-term surface temperature forecasts using the Kalman filter, Wea. Forecasting, 10: 689-707.
Hsieh, W.W. and Tang, B. (1998). Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull, Amer. Meteor. Soc., 79: 1855-1870.
Iranmehr, M.; Pourmanafi, S. and Soffianian, A. (2015). Ecological Monitoring and Assessment of Spatial-Temporal Changes in Land Cover with an Emphasis on Agricultural Water Consumption in Zayandeh Rood Region, Ecohydrology, 2(1): 23-38.
Kai Kong, S.; Sentian, J. and Bidin, K. (2015). Evaluation of Weather Research Forecast (WRF) Modeling System on Surface Temperature and Precipitation over Malaysia Region, Advances in Natural and Applied Sciences, 9(14): 20-24.
McCollor, D. and Stull, R. (2008). Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain, Wea. Forecasting, 23: 131-144.
Muler, M.D. (2011). Effects of Model Resolution and Statistical Post-processing on ShelterTemperature and Wind Forecasts, Journal of Applied Meteorology, 50: 1627-1636.
Rahmani, M.; Mohamadi, A.; Khakzar, M.; Azadi, M. and Memarjafari, M. (2015). Gridding of post processed WRF output for 2-meter temperature over Iran.
Taghizadeh, A. (1389). Evaluation of output Regional models WRF, HRM and MM5 for Precipitation Forecasts over Iran, Yazd University.
Warner, T.T. (2011). Numerical Weather and Climate Prediction, Cambridge University Press, Cambridge, 550 pp.
Woodcock, F. and Engel, C. (2005). Operational consensus forecasts, Wea. Forecasting, 20: 101-111.
Xu, J.; Rugg, S.; Byerle, L. and Liu, Z. (2009). Weather forecasts by the WRF-ARW model with the GSI data assimilation system in the complex terrain areas of Southwest Asia, Weather and Forecasting, 24: 987-1008.
Yazdanpanah, H. (2010). Statistical analysis in geography with a computational approach, Isfahan University, Publications of Isfahan University.
Zhang, H. and Pu, Z. (2013). Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain, Journal of Weather and Forecasting, 28(3).
Zoljoodi, M.; Ghazi Mirsaeed, M. and Seifari, Z. (2013). Verification of WRF model On Accuracy and Precision of Various Schemes and Evaluation of Precipitation Forecast in Iran, Geographical Researches Quarterly Journal, 28(2): 187-194.