Assessment of Climate Change Effects on Degree Days of Cooling and Heating Conditions in Selected Stations in Ilam Province

Document Type : Full length article

Authors

1 PhD Candidate in Urban Climatology, Islamic Azad University, Sciences and Research, Tehran, Iran

2 Associate Professor of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran

3 Professor of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran

Abstract

Introduction
The phenomenon of climate change is the most important challenge and threat to human societies in the future. Urban areas and human settlements are most vulnerable parts of the climate change. Any change in climate patterns will change the amount of energy. Due to global warming, we will see an increase in the average temperature of Iran in the coming decades compared to the present. As a result, the country will face a crisis of increasing energy consumption in the coming decades to cold environment, not only in the warm season.
Materials and methods
In this research, two types of data are obtained; historical observational data and simulated data on the output of general circulation models. Historical observational or baseline data course covering the period from 1980 to 2005. In the future data section, the output of simulator models was used for the upcoming period of the CMIP5 model. The results of the global circulation models do not have the capability for the local dimension, so, in order to compensate for this problem, it is necessary to use the methods of quantum microscopy. In order to achieve the climatic simulation data in the upcoming period, MarkSIMGCM database was used for exponential imaging of the AOGCM models. This database, as a web-based tool, uses a randomized third-order Markov model to downscale the minimum and maximum temperature values, and rainfall and sunshine daily fluctuations. In order to simulate the data for the upcoming period, the output of the proposed AOGCM Models (BCC-CSM1.1, HadGEM2-ES and GFDL-CM3) from the CMIP5 model (Comparison of Coupled Models Compared) was used with better spatial resolution. The RMSE, MBE, MAE and R2 indicators used for comparison.
Results and discussion
The results showed that the HadGEM2-ES of the CMIP5 general circulation model series has a higher performance and higher compliance with observation data. Assessments indicated that the amount of heat accumulation will increase under the conditions of climate change in the upcoming period. In the middle and far futures, the amount of cooling requirements will increase to adjust the ambient temperature due to increased air temperature. The magnitude of the incremental changes in the number of days of the cold need and the decrease in the value of the heating days is one of the major consequences of climate change in the energy field. At Dehloran Station, the cooling time period will be deployed between April and December. Under the conditions of the climate change, the current period, the number of days with cooling requirements will go up, and on the other hand, the time interval required for cooling will be wider. Most cooling needs will occur between June and August. Therefore, the amount of cooling requirements due to the increase in air temperature in tropical areas such as Dehloran is much higher than in high and mountainous areas such as the city of Ilam.
Conclusion
The results showed that in the middle and far future, the amount of cooling requirements will be increased to adjust the ambient temperature due to increased air temperature. At Dehloran Station, the cooling time will be switched between April and December. Under the conditions of the climate change of the current period, the number of days with cooling needs will go ahead and, on the other hand, the cooling-up time required will be wider. In both patterns of radiation induction, any change in the air temperature pattern will increase the cooling demand of different regions and urban settlements. Therefore, based on the results of this study, it is necessary for planners to take necessary measures to reduce the harmful effects in order to optimize energy consumption and increase the swing in different regions, especially tropical areas. 

Keywords

Main Subjects


ابراهیمی، ر، و مهدوی‌نژاد، ا. ( 1396). مدل‌سازی دورنمای رابطة میانگین دما و درجة روز سرمایش و گرمایش سالانة ایران، اندیشة جغرافیایی، 9(17): ۷۹-۹۸.
احمدی، ح. و شائمی، ا. (1391). آسایش اقلیمی شهر براساس شاخص‌های زیست‌اقلیمی (مطالعة موردی: شهر ایلام)، فصل‌نامة برنامه‌ریزی کالبدی– فضایی، 1: ۷۵-88.
احمدی، ح.؛ فلاح قالهری، غ.؛ باعقیده، م. و امیری، م.ا. (1397). بررسی اثرات تغییر اقلیم بر الگوی انباشت گرمایی مناطق کشت درخت سیب در ایران در دورة آینده، نشریة تحلیل فضایی مخاطرات محیطی، 5(2): 35-۵4.
احمدی، م. داداشی رودباری، ع. و ابراهیمی، ر. (1396 الف). مدل‌سازی روابط فضایی اثر توپوگرافی بر دورنمای نیاز گرمایشی ایران با استفاده از مدل میان‌مقیاس منطقه‌ای RegCM4، برنامه‌ریزی و آمایش فضا، 21(3): 27-53.
احمدی، م.؛ داداشی رودباری، ع. و ابراهیمی، ر. (1396 ب). مدل‌سازی درجة روز گرمایش و سرمایش در ایران، پژوهش‌های دانش زمین، 8(30): 127-140.
امیدوار، ک.؛ ابراهیمی، ر. و مزیدی، ا. (1395). واکاوی اثر گرمایش جهانی بر درجة ساعت‌های گرمایش و سرمایش ماهانة ایران، برنامه‌ریزی و آمایش فضا، 20(2): 42-62.
انتظاری، ع.؛ احمدی، ح.؛ کرمی، م. و احمدی، س. (1396). تحلیلی بر شرایط زیست‌اقلیمی و درجة روزهای نیاز گرمایشی و سرمایشی شهر اسلام‌آباد غرب، فصل‌نامة جغرافیا و برنامه‌ریزی دانشگاه تبریز، 26: 1-21.
ایمانی‌پور، ح.؛ کاشکی، ع.ا. و کرمی، م. (1397). واکاوی تغییرات نیازهای درجة روز گرمایشی تحت شرایط تغییر اقلیم در استان خراسان جنوبی، نشریة تحقیقات کاربردی علوم جغرافیایی، 18(51): 199-216.
بابائیان، ا،؛ رضایی‌پور، آ. و آهنگرزاده، ز. (1393). شبیه سازی نمایه آسایش اقلیمی در استان خراسان رضوی تحت سناریوهای تغییر اقلیم. مطالعات جغرافیایی مناطق خشک، 5(18): 112-95.
بابائیان، ا.؛ عرفانی، ع.؛ انتظاری، ع. و باعقیده، م. (1395). چشم‌انداز مصرف برق کشور در دورة 2100 – 2011 تحت شرایط تغییر اقلیم با استفاده از ریزمقیاس‌نمایی برون‌داد مدل‌های گردش عمومی جو، جغرافیا و برنامه‌ریزی محیطی، 64(4): 133-144.
ذوالفقاری، ح.؛ رحیمی، ح. و اوجی، ر. (1396). ارزیابی اثر تغییر اقلیم بر درجة روزهای گرمایشی و سرمایشی ایران، جغرافیا و پایداری محیط، 22: 1-20.
ذوالفقاری، ح.؛ هاشمی، ر. و رادمهر، پ. (1388). تحلیلی بر نیازهای سرمایشی و گرمایشی در شمال غرب ایران، پژوهش‌های جغرافیای طبیعی، 70: 21-34.
حلیمی، م.؛ اشرف تخت، ا،؛ و رستمی، ش. (1392). ارزیابی و دقت‌سنجی روش‌های درون‌یابی مکانی در برآورد نیازهای گرمایشی و سرمایشی ایران، نشریه پژوهش های اقلیم شناسی، 4(13 و 14): 84-73.
کاویانی، م. (1371). ارزیابی اقالیم حیاتی و آستانه‌های تحریک آن در سواحل دریای خزر و دامنه‌های شمالی البرز میانی، پژوهش‌های جغرافیایی، 29: 49–72.
مسعودیان، س. ا.؛ ابراهیمی، ر. و محمدی، م. (1393). پهنه‌بندی مکانی– زمانی نیاز گرمایشی و سرمایشی فصلی ایران، فصل‌نامة علمی– پژوهشی اطلاعات جغرافیایی (سپهر)، 23(90): 83-90.
مسعودیان، س.ا.؛ علیجانی، ب. و ابراهیمی، ر. (1390). واکاوی میانگین مجموع درجة روز مورد نیاز (گرمایش و سرمایش) در قلمرو ایران، پژوهش‌نامة جغرافیایی، 1: 23-36.
Ahmadi, H. and Shamei, A. (2013). Climatic Comfort of the City Based on Bioclimatic Indices (Case Study: Ilam City), Physical Planning Quarterly, 1: 75-88.
Ahmadi, M. Dadashi Roodbari, A, Ebrahimi, R. (2017). Spatial Relationship Modeling of Topography Effect on Iran's Heating Needs Perspective Using RegCM4 Regional Scale Model. Planning and space alignment, 21 (3): 27-53.
Ahmadi, M.; Davadhi Roudbari, A. and Ebrahimi, R. (2017). Modeling the heating and cooling day in Iran, Earth Sciences Research, 8(30): 127-140.
Babaian, A.; Mystical, A.; Waiting, A. and Say, M. (2016). Perspective of the country's electricity consumption during the period of  2011-2100 under climate change conditions using the magnitude of the output of general atmospheric circulation, Geography and environmental planning models, 64(4): 133-144.
Babaeian, A.; Rezaeipour, A.; Ahangarzadeh, Z. (2015). Simulation of climate comfort index in Khorasan Razavi province under climate change scenarios. Geographical Studies of Dry Areas, 5 (18): 112-95.
Ebrahimi, R. and Mahdavi Nejad, A. (2017). Modeling the perspective of the relationship between Iran's annual average annual temperature and cooling and annual heating and cooling, Geographic Thought, 9(17): 79-98.
Entezari, A.; Ahmadi, H.; Karami, M. and Ahmadi, S. (2017). Analyzing the climate and climate of the days of heating and cooling in the city of Islamabad West, Journal of Geography and Planning Tabriz University, 26: 21-1.
Frank, T. (2005).  Climate Change Impacts on Building Heating and Cooling Energy Demand in Switzerland, Energy and Buildings, 37: 1175-1185.
Halimi, M.; Ashraf Takht, A.; Rostami, Sh. (2014). Evaluation and accuracy of spatial interpolation Methods in estimating heating and cooling requirement of Iran, Journal of Climatological Research, 4 (13 & 14): 84-73.
Imanipour, H.; Kashkee, A. and Karami, M. (2018). Evalution of Changes in the Heating degree day requirements under climate change conditions in South -Khorasan Province, Journal of Applied Geographic Sciences Researches, 18(51): 199-216.
Jylha, K.; Jokisalo, J.; Ruosteenoja, K.; Pill shhvola, K.; Kalamees, T.; Seitola, T.; Makela, H.; Hyvonen, R.; Laapas, M. and Drebs, A. (2015). Energy demand for the heating and cooling of residential houses in Finland in a changing climate, Energy and Buildings, 99(1): 104-116.
Jones, P. Thornton, P. 2013. Generating downscaled weather data from a suite of climate models for agricultural modelling applications, Agricultural Systems 114: 1–5.
Kaviani, M; (1990). Assessment of critical elements and thresholds for its stimulation on the shores of the Caspian Sea and the northern slopes of the Middle Alborz, Geographical Research, 29: 49-72.
Li, M.; Shi, J.; Guo, J.; Cao, J.; Niu, J. and Xiong, M. (2015). Climate Impacts on Extreme Energy Consumption of Different Types of Buildings, PloS ONE, 10(4): e0124413.
Nouri, M.; Homaee, M.; Bannayan, M.; Hoogenboom, G. (2017). Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural Water Management 186: 108–119.
Martin, GM.; Bellouin, N.; Collins WJ.; Culverwell, ID.; Halloran, PR.; Hardiman, SC.; Hinton TJ et al. (2011). The HadGEM2 family of Met Office Unified Model climate configurations, Geoscientific Model Development, 4: 723–757Massoudian, Q.; Ah Alijani, B. and Ebrahimi, R. (1390). Analysis of the average amount of required day (heating and cooling) in the territory of Iran, Geographical Research, 1: 23-36.
Massoudian, Q.; Ebrahimi, R. and Mohammadi, M. (2014). Spatial zoning - when seasonal heating and cooling needs of Iran, Journal of Geographic Information Research (Sepehr), 23(90): 90-83.
Omidvar, K.; Ebrahimi, R. and Mazidi, A. (2016). Examining the effect of global warming on Iran's monthly heating and cooling watches, Planning and Space Approach, 20(2): 42-62.
Papakostas, K.T.; Michopoulos, A.K. and Kyriakis, N.A. (2009).  Equivalent Full-load Hours for Estimating Heating and Cooling Energy Requirements in Buildings Greece, Case Study, Energy, 34: 1807-1812.
Rosa, M.D.; Bianco, V.; Scarpa, F. and Tagliafico, L.A. (2015). Historical trends and current state of heating and cooling degree days in Italy, Energy Conversion and Management, 90(15): 323-335.
Roshan, G.; Farrokhzad, M. and Attia, S. (2017). Defining thermal comfort boundaries for heating and cooling demand estimation in Iran's urban settlements, Building and Environment.
Spandagos, C. and Ling, T. (2017). Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities, Applied Energy, 189(1): 352-368.
Tarroja, B.; Chiang, F.; Aghakouchak, A.; Samuelsen, S.; Raghavan, S.; Wei, M. and Hong, T. (2018). Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California, Applied Energy, 225(1): 522-534.
Invidiata, A.; Ghisi, E. (2016). Impact of climate change on heating and cooling energy demand in houses in Brazil. Energy and Buildings, 130: 20-32.
Wang, H. and Qingyan,  C. (2014). Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States, Energy and Buildings, 82: 428-436.
Xu, P.; Huang, Y.J.; Miller, N.; Schlegel, N. and Shen, P. (2012). Impacts of climate change on building heating and cooling energy patterns in California, Energy, 44(1): 792-804.
Yazdanpanah, H.; Barghi, H. and Esmaili, A. (2016). Effect of climate change impact on tourism: A study on climate comfort of Zayandehroud River route from 2014 to 2039, Tourism Management Perspectives, 17: 82-89.
Zolfaghari, H, Rahimi, H, Ojie, R. (2017). Assessment of the effect of climate change on the degree of heating and cooling days in Iran, Geography and Environmental Sustainability, 22: 1-20.
Zolfaghari, H.; Hashemi, R. and Radmehr, P. (2010). Analysis of the heating and cooling requirements in North-west of Iran, Natural Geography Researches, 70: 21-34.