امامیفر، س. و علیزاده، ا. (1393). برآورد میزان تابش خورشیدی با استفاده از محصولات دمای سطح زمین سنجندة MODIS مدل شبکة عصبی، آب و خاک (علوم و صنایع کشاورزی)، ۲۷(۳): 617-625.
بیات، ک. و میرلطیفی، س.م. (1388). تخمین تابش کل خورشیدی روزانه با استفاده از مدلهای رگرسیونی و شبکههای عصبی مصنوعی، علوم کشاورزی و منابع طبیعی، ۱۶(۳): 270-280.
پیری، ج.؛ انصاری، ح. و فرید حسینی، ع. (1392). مدلسازی تابش خورشید رسیده به زمین با استفاده از ANFIS و مدلهای تجربی (مطالعة موردی: ایستگاههای زاهدان و بجنورد)، انرژی ایران، ۱۶(۳): 37-58.
سبزیپرور، ع.ا. و علیایی، ا. (1390). ارزیابی عملکرد شبکة عصبی مصنوعی در پیشبینی تابش خورشیدی کل روزانه و مقایسة آن با نتایج مدل آنگستروم (مطالعة موردی: ایستگاه همدیدی تبریز)، ژئوفیزیک ایران، ۵(۳): 30-41.
سبزیپرور، ع.ا. و بیات ورکشی، م. (1389). ارزیابی دقت روشهای شبکة عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی، پژوهش فیزیک ایران، ۱۰(۴): 347-357.
سبزیپرور، ع.ا. و ختار، ب. (1394). ارزیابی شبکة عصبی مصنوعی و مدل تجربی ایرماک در تخمین تابش خالص خورشیدی روزانه در اقلیم سرد و نیمهخشک (مطالعة موردی: همدان)، دانش آب و خاک، ۲۵(۲): 37-50.
سبزیپرور، ع.ا. و ختار، ب. (1395). اعتبارسنجی مدلهای تجربی و نیمهتجربی برآورد تابش خالص روزانه با استفاده از مقادیر اندازهگیریشده در اقلیم سرد و نیمهخشک، آب و خاک (علوم و صنایع کشاورزی)، ۳۰(۶): 2087-2100.
سیّدیان، س.م.؛ فراستی، م.؛ روحانی، ح. و حشمتپور، ع. (1396). تخمین تابش خورشیدی با استفاده از پارامترهای هواشناسی، تحقیقات منابع آب ایران، ۱۳(۱): 88-100.
قبایی سوق، م.؛ مساعدی، ا. و دهقانی، ا.ا. (1390). مدلسازی هوشمند تابش خورشیدی با استفاده از آزمون گاما و مقایسه با معادلات تجربی واسنجیشده در کرمانشاه، پژوهشهای حفاظت آب و خاک، ۱۰(۴): 185-208.
کهخا مقدم، پ. و چاری، م.م. (1395). مقایسة مدلهای تجربی، رگرسیونی، و شبکة عصبی مصنوعی در برآورد تابش خالص دریافتی (Rs) در ایستگاه سینوپتیک زاهدان، جغرافیای طبیعی، ۹(۳۴): 137-150.
واثقیان، ی. (1395). تخمین تابش کلی خورشید در استان کرمانشاه با استفاده از شبکههای عصبی مصنوعی، انرژِی ایران، ۱۹(۱): 15-44.
هوشنگی، ن. و آلشیخ، ع.ا. (1393). ارزیابی روشهای فازی، عصبی، و فازی- عصبی در تخمین تابش خورشیدی کشور، علوم و فنون نقشهبرداری، ۴(۳): 187-200.
Abdallah, Y.A.G. (1994). New correlation of global solar radiation with meteorological parameters for Bahrain, Solar Energy, 16: 111-120.
Akinoglu, B.G. and Ecevit, A.A. (1990). Further comparison and discussion of sunshine based models to estimate global solar radiation, Energy, 15: 865-72.
Araghinejad, S. (2014). Data-Deriven Modeling: Using MATLAB in Water Resources and Environmental Engineering, NewYork, Springer.
Bayat, K.; Mirlatifi, S.M. (2009). Estimating global solar radiation using regression and artificial neural network models, Agricultural and Natural Resources Science, 16(3): 270-280.
Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A. and Noghrehabadi, A.R. (2010). The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data, Solar Energy, 84(8): 1468-1480.
Benkaciali, S.; Haddadi, M.; Khellaf, A.; Gairra, K. and Guermoui, A. (2016). Evaluation of the global solar irradiation from the artificial neural network technique, Revue des Energies Renouvelables, 19(4): 617-631.
Bosch, J.L.; Lopez, G. and Batlles, F.J. (2008). Daily solar irradiation estimation over a mountainous area using artificial neural networks, Renewable Energy, 33: 1622-1628.
Bristow, K.L., Campbell, G.S., (1984).On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agric. Forest Meteorol, Vol. 31, PP. 159-166.
Chen, R.S.; Ersi, K.; Yang, J.P.; Lu, S.H. and Zhao, W.Z. (2004). Validation of five global radiation models with measured daily data in China, Energy Convers. Manage, 45: 1759-1769.
Demirkaya, S. and Balcilar, M. (2012). The contribution of soft computing techniques for the interpretation of dam deformation, In FIG Working Week 2012 - Knowing to manage the territory, protect the environment, evaluate the cultural heritage, 6-10 May, Rome, Italy.
Elagib, N. and Mansell, M.G. (2000). New approaches for estimating global solar radiation across Sudan, Energy Convers Manage, 41: 419-34.
Emamifar, S. and Alizadeh, A. (2014). Estimation of Solar Radiation Using Land Surface Temperature MODIS Sensor Data and Neural Network Model, Journal of Water and Soil, 28(3): 617-625.
Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X. and Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China, Energy conversion and management, 164: 102-111.
Ghabaei-Sough, M.; Mosaedi, A. and Dehghani, A.A. (2011). Solar radiation data and their intelligent modeling based on gamma test with evaluation of calibrated empirical equations, Journal of Water and Soil Conservation, 18(4): 185-208.
Guermoui, M.; Rahebi, A.; Benkaciali, S. and Dejelloul, D. (2016). Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region, Leonardo Electronic Journal of Practices and Technologies, 15(28): 35-46.
Guermoui, M.; Rabehi, A.; Gairaa, K. and Benkaciali, S. (2018). Support vector regression methodology for estimating global solar radiation in Algeria, The European Physical Journal Plus, 133(1): 22.
Halabi, L.M.; Mekhilef, S. and Hossain, M. (2018). Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation, Applied energy, 213: 247-261.
Haykin, S. (1999). Neural Networks: a comprehensive foundation, MacMillan, New York.
Hooshangi, N. and Alesheikh, A.A. (2015). Evaluation of ANN, ANFIS and fuzzy systems in estimation of solar radiation in Iran, Journal of Geomatics Science and Technology, 4(3): 187-200.
Houichi, L.; Dechemi, N.; Heddam, S. and Achour, B. (2013). An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel, Journal of Hydroinformatics, 15(1): 147-154.
Kahkha-Moghaddam, P. and Chari, M.M. (2017). Comparing empirical, regression and artificial neural network models, in estimating received net radiation of Zahedan synoptic station, Natural Geography, 9(34): 137-150.
Kassem, A.S.; Aboukarima, A.M.; El Ashmawy, N.M. and Zayed, M.F. (2016). Comparison of Empirical Models and an Adaptive Neuro Fuzzy Inference System for Estimating Hourly Total Solar Radiation on Horizontal Surface at Alexandria City, Egypt, Advances in Research, 7(5): 1-17.
Keshavarzi, A.; Sarmadian, F.; Shiri, J.; Iqbal, M.; Tirado-Corbala, R. and Evis Omran, E.S. (2017). Application of ANFIS-Based Subtractive Clustering Algorithm in Soil Cation Exchange Capacity Estimation Using Soil and Remotely Sensed Data, Measurement, 95: 173-180.
Khosravi, A.; Nunes, R.O.; Assad, M.E.H. and Machado, L. (2018). Comparison of artificial intelligence methods in estimation of daily global solar radiation, Journal of cleaner production, 194: 342-358.
Lopez, G.; Rubio, M.A.; Martinez, M. and Batlles, F.J. (2001). Estimation of hourly global photosynthetically active radiation using artificial neural network models, Agri Forest Meteorol, 107: 279-291.
Lotfinejad, M.M.; Hafezi, R.; Khanali, M.; Hosseini, S.S.; Mehrpooya, M. and Shamshirband, S. (2018). A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study, Energies, 11(5): 1-15.
Meenal, R. and Immanue Selvakumar, A. (2018). Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters, Renewable Energy, 121: 324-343.
Mohammadi, K.; Shamshirband, S.; Tong, C.V.; Amjad Alam, K. and Petkovic´, D. (2015). Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year, Energy Conversion and Management, 93: 406-413.
Mohandes, M.; Rehman, S. and Halawani, T.O. (1998). Estimation of global solar radiationusing artificial neural networks, RenewEnergy, 14: 179-184.
Morshed Varzandeh, M.H.; Rahbari, O.; Vafaeipour, M.; Raahemifar, K. and Heidarzadeh, F. (2014). Performance of Wavelet Neural Network and ANFIS Algorithms for Short-Term Prediction of Solar Radiation and Wind Velocities, The 4thWorld Sustainability Forum, 1-30 Nov. 2014.
Mosavi, M.R. (2007). GPS Receivers Timing Data Processing using Neural Networks: Optimal Estimation and Errors Modeling, International Journal of Neural Systems, 17(5): 383-393.
Olatomiwa, L.; Mekhilef, S.; Shamshirband, S. and Petkovic´, D. (2015). Adaptive Neuro-fuzzy approach for solar radiation prediction in Nigeria, Renewable and Sustainable Energy Reviews, 51: 1784-1791.
Piri, J.; Ansari, H. and Farid-Hosseini, A. (2013). Modeling ground-reached solar radiation using ANFIS and empirical models (Case of study: Zahedan and Bojnourd stations), Iranian Journal of Energy, 16(3): 37-58.
Quej, V.H.; Almorox, J.; Arnaldo, J.A. and Saito, L. (2017). ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment, Journal of Atmospheric and Solar–Terrestrial Physics, 155: 62-70.
Rahimi, J.; Ebrahimpour, M. and Khalili, A. (2013). Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran, Theoretical ana Applied Climatology, 112(3-4): 409-418.
Sabziparvar, A.A. and Bayat-Varkeshi, M. (2011). Evaluation accuracy of artificial neural networks and neuro-fuzzy methods in simulating global solar radiation, Iranian Physics Research, 10(4): 347-357.
Sabziparvar, A.A. and Khataar, B. (2014). Evaluation of Artificial Neural Network (ANN) and Irmak Experimental Models to Predict Daily Solar Net Radiation (Rn) in Cold Semi-arid Climate (Case study: Hamedan), Water and Soil Science, 25(2): 37-50.
Sabziparvar, A.A. and Khataar, B. (2017). Validation of Empirical and Semi-empirical Net Radiation Models versus Observed Data for Cold Semi-arid Climate Condition, Journal of Water and Soil, 30(6): 2087-2100.
Sabziparvar, A.A. and Olyaie, E. (2012). Evaluation of the performance of artificial neural networks (ANN) in predicting the daily global solar radiation and comparison with results from the Angström model (case study: Tabriz synoptic station), Iranian Journal of Geophysics, 5(3): 30-41.
Seyedian, S.M.; Farasati, M.; Rouhani, H. and Heshmatpour, A. (2017). Solar Radiation Prediction Using Metrological Parameters, Iran-Water Resources Research, 13(1): 88-100.
Siva Krishna Rao K.D.V.; Premalatha, M. and Naveen, C. (2018). Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study, Renewable and Sustainable Energy Reviews, 91: 248-258.
Sumithira, T.R. and Nirmal Kumar, A. (2012). Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the State of Tamilnadu (India): a comparative study, Applied Solar Energy, 48(2): 140-145.
Torabi, M.; Mosavi, A.; Ozturk, P.; Varkonyi-Koczy, A. and Istvan, V. (2018). September, A hybrid machine learning approach for daily prediction of solar radiation, In International Conference on Global Research and Education (PP. 266-274), Springer, Cham.
Tymvios, F.S.; Jacovides, C.P.; Michaelides, S.C. and Scouteli, C. (2005). Comparative study of Angstroms and artificial neural networks methodologies in estimating global solar radiation, Solar Energy, 78: 752-762.
Vakili, M.; Sabbagh-Yazdi, S.R.; Kalhor, K. and Khosrojerdi, S. (201). Using Artificial Neural Networks for Prediction of Global Solar Radiation in Tehran Considering Particulate Matter Air Pollution, Energy Procedia, 74: 1205-1212.
Vaseghian, Y. (2016). Estimating global solar radiation in Kermanshah province using artificial neural networks, Iranian Journal of Energy, 19(1): 15-44.
Yıldırım, H.B.; Çelik, Ö.; Teke, A. and Barutçu, B. (2018). Estimating daily Global solar radiation with graphical user interface in Eastern Mediterranean region of Turkey, Renewable and Sustainable Energy Reviews, 82: 1528-1537.