The impacts of Climate Change on Growth Period and Water Requirement of the Apple Tree (Case Study: Semirom and Urmia, Iran)

Document Type : Full length article


1 Associate Professor of Climatology, Faculty of Geographical Sciences, Mohaghegh Ardabili University, Iran

2 PhD Candidate in Climatology, Faculty of Geographical Sciences, Mohaghegh Ardabili University, Iran

3 Professor of Climatology, Faculty of Geographical Sciences, University of Tabriz, Tabriz, Iran


Climate plays a key role in the successful production of horticultural products for the global trade. Horticultural activities are highly dependent on local weather conditions. The study of the phenomenological behavior of the products as part of the impact of environmental conditions is important, because for optimal production as well as more appropriate management, it is essential to know the phonological stages and changes in the product.
Materials and methods
In this study, the ECMWF database has been used for observation data of Semirom and Urmia stations during 20-year period (1996-2001). To evaluate the accuracy of ECMWF data with the observation data of the Iranian Meteorological Organization during the common time interval with the nearest point of ERA-Interim to the stations studied, we have used the Pearson Correlation Coefficient (R), Coefficient of Determination (R2), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and Normalized Root Mean Squared Error (NRMSE). The most important factor in determining the need for water is the accurate ETo estimation in each region, so the potential evapotranspiration (ETᴼ) values were calculated using the Penman-Monteith FAO method. To investigate the effects of climate change on water requirement and duration of growth, the daily micro scale dynamic data of the CORDEX project with a precision of 44% * 44% for the output of the ICHEC-EC-EARTH model under the two lines of 4.5 and 8.5 (RCP) was used for the period (2017-2037). In order to reduce the errors in the model estimates, the post-processing action of the estimated events was fulfilled. The water requirement and growth season length of the apples was also evaluated. Given the highest amount of apple cultivars in the study area is autumn, the type of late fall apple is selected for evaluation. According to correlation of each step of growing apples with thermal operating temperature, length of growing season and vegetative stages of apple tree were calculated using GDD.
Results and discussion
The statistical results between ERA-Interim data and observational data at the stations were examined and the accuracy of the database was confirmed for both stations. In the next section, in order to select the best model for the study area, the data of the base year of the growth season of the CORDEX project models was compared with the observational data. The ICHEC-EC-EARTH model has a lower error rate than the other two. The post processing of historical events has been able to greatly increase the model's performance data. The results of the two man-Kendall and Sen's slope at the Semirom station on the ETo observations were reduced during the growing season, but in the Urumia station, the slope is positive and incremental. The evapotranspiration potential was observed in the growing season, under the RCP4 / 5 and RCP8 / 5 trajectories for the stations.  This is typical of an incremental trend. At the Uromiyah station, the results of the ETo on the growth stages of the apple tree indicate an increasing trend for observational data in all stages. For the estimated data, the effective rainfall season in Urumieh station is more than Semirom. Therefore, during the growth season of the apple tree, the Semirom station will need more water in the observation period and years of forecasting than the station in Orumiyeh. At both stations, in the observation period and the estimated data, the rainfall level is effective in the germination stage, more than other stages. In the course of 8/8 for both effective precipitation stations will be increased in the observation period. Given the evapotranspiration and precipitation during the growing season of apples, the results of simulations showed that under climate change conditions compared with the base period, the need for irrigation of apple trees at Urmia and Semirom stations should be increased under both scenarios. The results from the comparison of the growth period of the base period and the estimated data at the stations under both scenarios indicate a decrease in the growth period in the future. The trend was not statistically verified. Earlier heat supply due to increased temperature has led to some shortening steps. Decrease in the growth period in the scenario is 5.8 and more than the 4.5scenario.
Based on the evaluation methods, the ECMWF data estimation error with observational data was negligible, and the database for the study stations can be verified. The results showed that evapotranspiration in both stations are increasing during the growing season. The ETo increase in the growth season of the apple tree was predicted from the base period for the trajectories of 4.5 and 8.5 for the Semirom at 4.14.7 and 7.99.7, respectively, and for Orumiye Station, the values are 26.5 and 11.8, respectively. However, this increasing process will raise the apple's need for water. The highest amount of evaporation and water requirement in the observed and estimated data has been occurred in the period of growth. At this stage, the lowest effective rainfall and the highest average temperature have occurred but generally the percentage of upcoming changes of germination stage was more than other stages. Earlier heat supply will reduce the growth period of the apple tree. In fact, the plant will complete its growth and reproduction cycle earlier, resulting in reduced yield, reduced quality and color, increased temperature and increased water requirement. Earlier heat supply due to increased temperature has led to some shortening steps.


اسماعیلی، ر.؛ حبیبی نوخندان، م. و فلاح قالهری، غ. (1389). ارزیابی تغییرات طول دورة رشد و یخبندان ناشی از نوسانات اقلیمی، پژوهش‏های جغرافیای طبیعی، 73: ۶۹-82.
احمدی، ح.؛ فلاح قالهری، غ. و گودرزی، م. (1397). برآورد و تعیین الگوی فضایی نیاز آبی درخت سیب در ایران، اکو هیدرولوژی، 5(۱): ۱۴۹-160.
بابائیان، ا.؛ نجفی نیک، ز.؛ زابل عباسی، ف.؛ حبیبی نوخندان، م.؛ ادب، ح. و ملبوسی، ش. (1388). ارزیابی تغییر اقلیم کشور در دورة ۲۰۱۰-2039 میلادی با استفاده از ریزمقیاس‏نمایی داده‏های مدل گردش عمومی جو ECH0-G، جغرافیا و توسعه، 16: ۱۳۵-152.
حجازی‏زاده، ز. و طولابی‏نژاد، م. (1395). شبیه‏سازی اقلیمی با تأکید بر مدل منطقه‏ای (RegCM4)، انتشارات آکادمیک، انجمن جغرافیایی ایران.
حیدری بنی، م.؛ یزدان‏پناه، ح. و محنت‏کش، ع. (1397). بررسی اثرات تغییر اقلیم بر عملکرد و مراحل فنولوژیکی کلزا (مطالعة موردی: استان چهارمحال و بختیاری)، پژوهش‏های جغرافیای طبیعی، 50(۲): ۳۷۳-389.
دارند، م. و زند کریمی، س. (1394). واکاوی سنجش دقت زمانی- مکانی بارش پایگاه دادة مرکز پیش‏بینی میان‏مدت جوی اروپایی (ECMWF) بر روی ایران‏زمین، پژوهش‏های جغرافیای طبیعی، 47(۴): ۶۵۱-675.
رحمانی، م.؛ جامی الاحمدی، م.؛ شهیدی، ع. و هادی‏زاده ازغندی، م. (1394). تأثیر تغییر اقلیم بر طول مراحل رشد و نیاز آبی گندم (Triticum aestivum L) و جو (Hordeum vuhgare L) مطالعة موردی: دشت بیرجند، نشریة بوم‏شناسی کشاورزی، 7(۴): 443-460.
رضیئی، ط. و ستوده، ف. (1396). بررسی دقت مرکز اروپایی پیش‏بینی‏های میان‏مدت جوی (ECMWF) در پیش‏بینی بارش مناطق گوناگون اقلیمی ایران، فیزیک زمین و فضا، 43(۱): 133-147.
سلیمانی ننادگانی، م.؛ پارسی‏نژاد، م.؛ عراقی‏نژاد، ش. و مساح بوانی، ع. (1391). بررسی رخداد تغییر اقلیم و تأثیر آن بر زمان کاشت، طول دورة رشد، و نیاز آبی گندم زمستانه (مطالعة موردی بهشر)، مجلة پژوهش آب ایران، ۶(۱۰): ۱۱-20.
سلیمانی ننادگانی، م.؛ پارسی‏نژاد، م.؛ عراقی‏نژاد، ش. و مساح بوانی، ع. (۱۳۹۰). تأثیر تغییر اقلیم بر نیاز خالص آبیاری و عملکرد گندم دیم (مطالعة موردی بهشر)، نشریة آب‏وخاک (علوم صنایع و کشاورزی)، 25(۲): ۳۸۹-397.
علیزاده، ا. (1390). اصول هیدرولوژی کاربردی، چ ۳۲، مشهد: انتشارات دانشگاه فردوسی مشهد.
قادرزاده، آ. (1394). ارزیابی پیامدهای تغییرات آب‏وهوا بر مراحل فنولوژی درختان سیب شهرستان ارومیه، استاد راهنما بهروز سبحانی، پایان‏نامة کارشناسی ارشد رشتة جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل.
قهرمان، ن.؛ بابائیان، ا. و طباطبایی، س.م.ر. (۱۳۹۵). بررسی اثرات تغییر اقلیم بر نیاز آبی و طول دورة رشد گیاه نیشکر تحت سناریوهای واداشت تابشی، نشریة حفاظت منابع آب‏وخاک، ۶(۱): ۶۳-74.
میان‏آبادی، آ.؛ علیزاده، ا.؛ ثنایی‏نژاد، ح.؛ قهرمان، ب. و داوری، ک. (1395). پیش‏بینی تغییرات تبخیر واقعی سالانه در مناطق خشک با استفاده از چهارچوب اصلاح‏شدة بادیکو (مطالعة موردی: حوضة آبریز نیشابور- رخ)، نشریة آبیاری و زهکشی ایران، 10(۳): ۳۹۸-411.
میرصانع، م.؛ مساح بوانی، ع.ر بلوک آذری، س. و سهرابی ملایوسف، ت. (1389). ارزیابی تأثیر تغییر اقلیم بر نیاز آبی چغندرقند و طول دورة رشد آن، دومین کنفرانس سراسری مدیریت جامع منابع آب، ص 567.
میر موسوی، ح.؛ اکبری،  ح.؛ پناهی، ح. و اکبرزاده، ی. ( 1391). واسنجی روش­های برآورد تبخیر-تعرق پتانسیل گیاه مرجع (ETO) و محاسبه نیاز آبی گیاه (ETC) زیتون در استان کرمانشاه، جغرافیا و پایداری محیط، 2(3): 64-45.
نهبندانی، ع. و سلطانی، ا. (1395). شبیه‏سازی تأثیر تغییرات اقلیمی بر نیازهای آبیاری و عملکرد سویا در گرگان، نشریة منابع آب‏وخاک (علوم صنایع و کشاورزی)، 30(۱): ۷۷-87.
یزدان‏پناه، ح. و سلیمانی‏تبار، م. (۱۳۹۲). بررسی اثرات تغییر آب‏وهوا بر مراحل فنولوژی سیب در شمال شرق ایران، نخستین کنفرانس ملی آب و هواشناسی، کرمان، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته.
Acharjee, TK.; Ludwig, F.; Van Halsema, G.; Hellegers, P. and Supit, I. (2017). Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh, Agricultural Water Management, 194: 172-183.
Ahmadi H.; Fallah Ghalhari, Gh. and Goodarzi M. (2018). Estimation and determination of spatial pattern of Apple tree water requirement in Iran, Eco hydrology, 5(1): 149-160.
Alizadeh, A. (2011). Principles of Applied Hydrology, Ferdowsy University Press, Mashhad, Second Edition.
Babaian, I.; Nagafi Neik, Z.; Zabol Abbasi, F.; Habeibei Nokhandan, M.; Adab, H. and Malbisei F. (2010). Climate Change Assessment over Iran During 2010-2039 by Using Statistical Downscaling of ECHO- G Model, Geography and development Iranian Journal, 7(16): 135-152.
Baguis, P.; Roulin, E.; Willems, P. and Ntegeka, V. (2010). Climate change scenarios for recipitation and crop evapotranspiration over central Belgium, Theoretical Applied Climatology, 99: 273-286.
Corobov, R. (2000). Estimation on Climate change impacts crop production in the Republic of Moldova, Geojournal, 57: 195-202.
Darand, M. and Zande Karimi, S. (2016). Evaluation of Spatio-Temporal Accuracy of Precipitation of European Center for Medium-Range Weather Forecasts (ECMWF) over Iran, Physical geography pesearch quartery, 47(4): 651-675.
Doll, P. (2002). Impact of climate change and variability on irrigation requirement: a global perspective, J. of Climate Change, 54: 269-293.
Fulu, T.; Masayuki, Y.; Yinlong, X.; Yousay, H. and Zhao, H. (2006). Climate changes and trends in phenology andyields of field crops in China, Agricultural and Forrest Meteorology, 138: 82-92.
Hejazizadeh, Z. and Toulabi nejad. (2016).Climate simulation, emphasizing in Regional Climate Model (Regcm4), academic, Geographical Society of Iran.
Heidarybeni, M.: Yazdanpanh, H. and Mehnatkesh, A. (2018). Impacts of Climate Change on Canola Yields and Phenology (Case Study: Chahrmahal Va Bakhtiari, Iran), Physical Geograohy Reserch Quarterly, 50(2):373-386
Grab, S.  and Craparo, A. (2011). Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agric. For. Meteorol. 151: 406–413.
Ghaderzade, A. (2015). Assessment of the Climate Change Effects on the Phonological Stages of Apple Apples in Urmia, Ghad, Master's Degree in Natural Geography, Supervisor: Behrouz Sobhani, University of Mohaghegh Ardabili, Ardebi.
Ghahramn, N.; Babaian, A. and Tabatabaei, MR. (2016). Investigation the effect of climate change on sugarcane growing season and water requirement under RCP scenarios, Journal Water and Soil Resources Conservation, 6(1): 64-74.
Gouvea, J.R.F.; Sentelhas, P.C.; Gazzoal, S.T. and Santos, M.C. (2009). Climate Change and technological advances: impact on sugarcane productivity in tropical southern Brazil, Scientia Agricoal, 66: 593-605.
Liang, G.; Jun, H.; Ming, CH.; Jian, CH. and Eile, L. (2015). Responses of sparing phenology in temperate zone trees to climate warming: Acase study of apricot flowering in china, Agriculatural and forest Meterology, 201: 1-7.
McMaster, G.S. and Wilhelm, W.W. (1997). Growing degree-days: one equation, two interpretations, Agricultural and Forest Meteorology, 87(4): 291-300.
MirMoussavi, H.:  Akbari, H.: Panahi, H. and  Akbarzadeh, Y. (2012). Calibration Methods to Estimate Reference Crop Evapotranspiration and Calculated Potential Water Requirements of Olive Plant in Kermanshah Province,   Geography and Sustainability OF Environmental, 2( 3). 64-45.
Mianabadi, A.; Alizadeh, A.; Sanaeinejad, H.; Ghahram, B. and Davary, K. (2016). Prediction of Annual Evaporation Change in Dr y Regions Using the Budyko-type framework (Case Study of Neishaboor-RokhWatershed), Iraian jouranal of irrigation and Drainage, 3: 411-398.
Mirsanah, M.; Moshan Bouwani, A.; Azari Blok, S. and Sohrabi Mollayosef, T. (2009). Assessment of the impact of climate change on the need for sugar beet and its growth period, Second National Conference on Integrated Water Resources Management.
Moriasi, D.N.; Arnold, M.W.; Van Liew, R.L.; Harmel, R.D and Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3): 885-900.
Nehbandani, A.R. and Soltani, A. (2016). Simulate the Effect of Climate Change on Development, Irrigation Requirements and Soybean Yield in Gorgan, Journal of water and soil, 30(1): 77-87.
Rahmani, M.; Jami Al-Ahmadi, M.; Shahidi, A. and Hadizadeh Azghandi, M. (2016). Effects of climate change on the length of growth stages and  water requirement of wheat and barley (Case Study: Birjand Plain),Agroecology. 7(4): 460-432.
Raziei, T. and Sotoudeh, F. (2017). Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran, Journal of the earth and space physic, 43(1): 133-147.
Rea, R. and Eccel, E. (2006). Phenological models for blooming of apple in a mountainous region, Int. J. Biometeorol, 51: 1-16.
Sabziparvar, A.A. and Norooz Valashedi, R. (2015). Impact of climate change on winter Chiling trend for Deciduous fruit tree (case study: Hamadan), journal of Water and Soil, 29(3): 358-367.
Soleymani Nandadgani, M.; Parsinejad, M.; Araghinejad, Sh. and Masoumeh Boavani, A. (2011). Study on Climate change Effect on net irrigation Requirement and yield for Rainfed Wheat (Case Study: Behshahr), Journal of Water and Soil (Agricultural Sciences and Technology Journal), 25(2): 389-397.
Surendran, U.; Sushanth, CM.; Mammen, G. and Joseph, EJ. (2015). Modeling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India. Aquatic Procedia, 4: 1211-1219.
Valentini, N.; Me, G.; Ferrero, R. and Spanna, F. (2001). Use of bioclimatic indexes to characterize phenological phases of apple varieties in Northern Italy, Int. J. Biometeorol, 45(4): 191-195.
Van Vuuren, D.P.: Edmonds, J.: Kainuma, M.:  Riahi ,K.: Thomson, A.: Hibbard ,K.: Hurtt, G.C.: Kram, T.: Krey, V.:  amarque, J.F.: Masui, T.:  Meinshausen, M.:  Nakicenovic, N.: Smith, S.J.: Rose,S.K. (2011). The representative concentration pathways: an  overview. Climatic Change. 109:5–31.
Yazdanpanah, H. and Soleymani, M. (2013). Investigating the Effects of Climate Change on Apple Nutrition Phases in Northeast Iran, First National Climate Conference, Kerman, Industrial and Advanced Technology Graduate University.