The role of transmitted moisture changes in occurrence of drought and wet years in Iran

Document Type : Full length article

Authors

1 Assistant Professor of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran

2 PhD Student of Climatology, University of Shahid Beheshti, Tehran, Iran

3 Associate Professor of Climatology, Faculty of Geography, University of Tehran, Tehran, Iran

Abstract

Introduction
Atmospheric moisture resources affecting rainfall in a region are one of the most important issues in atmospheric sciences. In addition, understanding the mechanism of initiation and transfer of atmospheric moisture help know water cycle in a region. The main components of water cycle are the evaporation from land surface and oceans, transfer of water vapor from ocean to land, precipitation over oceans and lands and the recurrence of water from land to the ocean. Consequently, the percentage of moisture flow of a region and the amount of evaporated water could be assessed using atmospheric moisture flow and observed precipitation.
Therefore, the effect of evaporation from water bodies and transfer of atmospheric moisture on precipitation could be determined by mechanism. The spatio-temporal variations of precipitation could be investigated by study of moisture fluctuation due to variations in atmospheric circulation in drought and wet patterns conditions. Therefore, in recent study the difference in atmospheric patterns of drought and wetness conditions, moisture flux and water resources can affect the transfer of moisture over Iran in various atmospheric levels.
Materials and methods
In this study, we have analyzed the data from the ERA interim center of Europe in medium-term forecasts (ECMWF) with a spatial resolution of 1 ° * 1 ° of geographical latitude and longitude for the period 1981-2011.
Precipitation data have also been used in order to find the wet and drought patterns in Iran. Moreover, geo-potential height, specific humidity,  zonal and Meridional components of wind in 00 and 12 UTC of 1000, 850, 700, 500 and 300 hPa have been used for analysis of atmospheric moisture source.
Standardized Z-Index has been used to determine drought and wet patterns over Iran and the percentage of occurrence of the patterns worked out yearly. The year with maximum percentage of occurrence of drought and wet periods is selected for further analysis. In next step, precipitation periods of selected years with precipitation values more than 1 mm and minimum 30 percent of affected area were determined for estimating contribution of water bodies in the periods.
The total vertical divergence of moisture flux were calculated in 1 ° * 1 °  of geographical latitude and longitude  networks   in   lower, middle  and upper levels with total atmospheric thickness over Iran for selected years. In the next step, the positive and negative values of moisture flux of each network were derived for Iran and water bodies out of Iran, respectively.
Finally, atmospheric circulation and specific humidity maps of precipitation periods of wet and drought years were   prepared and analyzed for 850, 700 and 500 hPa as a indicator of lower, middle and upper levels, respectively. 
Results and discussion
The results of calculation of Z-Index showed that the 1995-96 and 1999-2000 were determined as wet and drought years with 87.3 and 98.7 percents, respectively. The humidity flux and percentage of variations for all layers were more in wet year as compared to the drought year.
The transfer of moisture in wet and drought periods was related to Arabian Sea over Iran. The Mediterranean and red seas were in the second order, Persian Gulf in the third order, and black Oman and Caspian seas in the next orders in both wet and drought periods. The Arabian and Caspian seas had no impact on moisture due to the flow patterns in middle atmospheric levels. Therefore, the Mediterranean Sea had the most contribution for transfer of moisture over Iran. In upper levels, the contribution of water resources in transferring the moisture was the same as the middle levels, although, the amount of moisture flux was changed.
The results also revealed that the southern border of the country is the most important direction for the entering moisture, especially at lower atmospheric levels. It might be due to the fact that the southern water bodies and Arabian Sea are the main moisture sources at atmospheric lower levels. In overall, the atmospheric low levels played a significant role in transferring moisture in Iran at all directions and the atmospheric upper levels. Hence, the southern and western directions had more contribution to the process as compared to other directions.  
Conclusion
The results showed that the air flow pattern over the region and position of water bodies play a remarkable role for imported moisture variations over Iran. The moisture flux at wet period was more at all levels. In addition, Arabian Sea at atmospheric low level and Mediterranean Sea at medium and upper levels had more contribution for transferring moisture content in Iran. Moreover, the results showed that southern border were in first priority and western borders in second priority for importing moisture at atmospheric lower, medium and upper levels over Iran.

Keywords


انصافی مقدم، ط. (1386). ارزیابی چند شاخص خشک‏سالی اقلیمی و تعیین مناسب‏ترین شاخص در حوضة دریاچة نمک، فصل‏نامة علمی- پژوهشی تحقیقات مرتع و بیابان ایران، ۱۴(2): ۲۷۱-288.
بذرافشان، ج. و خلیلی، ع. (1382). ارزیابی کارایی چند نمایة خشک‏سالی هواشناسی در نمونه‏های اقلیمی مختلف ایران، نشریة نیوار، 48-49: ۷۹-۹۳.
براتی، غ.‌ر. و حیدری، ا. (1382). رده‏بندی منابع رطوبتی بارش‏های غرب ایران (سال آبی ۱۹۸۴-۱۹۸۵)، سومین کنفرانس منطقه‏ای و اولین کنفرانس ملی تغییراقلیم، اصفهان، 29 مهر الی اول آبان سال 1382، ص ۱۶-۲۳.
پرک، ف. (1389). تحلیل سینوپتیکی نقش دریای سرخ در تقویت و تأمین رطوبت سامانة سودانی عبوری و تأثیر آن در ترسالی و خشکسالی‏های جنوب و جنوب غرب کشور، پایان نامة کارشناسی ارشد، دانشکدة علوم زمین، دانشگاه شهید بهشتی.
پوراصغر، ف.؛ حسنعل‏یزاده، ا.‏ش.؛ امیدفر، م.؛ اصلاحی، م. و اکبرزاده، ی. (1391). بررسی شار رطوبتی در دوره‏های ترسالی و خشک‏سالی استان آذربایجان شرقی، پنجمین کنگرةبینالمللی جغرافیدانان اسلام، دانشگاه تبریز.
جهان‏بخش، س. و قویدل رحیمی، ی. (1384). تحلیل توزیع فضایی دوره‏های مرطوب و خشک ایستگاه‏های آذربایجان شرقی، فضای جغرافیایی، 27: ۵-17.
خدادی، م.‏م.؛ آزادی، م. و رضازاده، پ. (1392). منابع رطوبت و ترابرد ماهانة آن روی ایران و برهم‏کنش آن با مونسون هندوستان و پُرارتفاع جنب حاره، مجله ژئوفیزیک ایران، 7(۲): ۹۶-113.
خوشحال، ج.؛ خسروی، م. و نظری‏پور، ح. (1388). شناسایی منشأ و مسیر رطوبت بارش‏های فوق سنگین استان بوشهر، مجلة جغرافیا و توسعه، 61: ۷-28.
خوش‏اخلاق، ف. (1377). بررسی الگوهای ماهانة خشک‏سالی و ترسالی در ایران، رسالة دکتری جغرافیایی طبیعی گرایش اقلیم‏شناسی، دانشگاه تبریز.
دارند، م. و زند کریمی، س. (1394). واکاوی سنجش دقت زمانی- مکانی بارش پایگاه دادة مرکز پیش‏بینی میان‏مدت جوی اروپایی (ECMWF) بر روی ایران‏زمین، فصل‏نامة پژوهش‏های جغرافیای طبیعی، 47(۴): 6۵۱-6۷۵.
ذبیحی، م.؛ شاهدی، ک.؛ دارابی، ح. و صفری، ع. (2014). مطالعة خشک‏سالی هواشناسی دشت بجنورد با استفاده از شاخص‏های SPI، PNPI، NITZCHE، ZSI، و DI، پنجمین کنفرانس مدیریت منابع آب ایران.
علیجانی، ب. (1372). مکانیزم‏های صعود بارندگی‏های ایران، مجلة دانشکدةادبیات دانشگاه تربیت معلم، شمارة 85.
علیجانی، ب. (1389). آب و هوای ایران، چ۴، انتشارات پیام نور.
فرج‏زاده، م. (1374). تحلیل و پیش‏بینی خشک‏سالی در ایران، رسالة دکتری، جغرافیای طبیعی گرایش اقلیم‏شناسی، دانشگاه تربیت مدرس.
فرج‏زاده، م.؛ کریمی احمدآباد، م.؛ قائمی، ه. و مباشری، م. (1386). چگونگی انتقال رطوبت در بارش زمستانة غرب ایران (مطالعة موردی بارش 3-7 ژانویة 1996)، فصل‏نامة مدرس علوم انسانی، 13(۱): ۱۹۳-217.
قائدی، س.؛ موحدی، س. و مسعودیان، ا. (1391). رابطة فرود دریای سرخ با بارش‏های سنگین ایران، مجلة جغرافیا و پایداری محیط، 2: ۱-۱۸.
قویدل رحیمی، ی. (1390). نگاشت و تحلیل همگرایی جریان رطوبت جو طی بارش فوق سنگین ناشی از طوفان حاره‏ای فت در سواحل چاه‏بهار، فصل‏نامة مدرس علوم انسانی، 15(۲): ۱۰۱-118.
کریمی احمدآباد، م. (1386). تحلیل منابع تأمین رطوبت بارش‏های ایران، رسالة دکتری، جغرافیای طبیعی گرایش اقلیم‏شناسی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس.
کریمی احمدآباد، م. و فرج‏زاده، م. (1390). شار رطوبت و الگوهای فضایی- زمانی منابع تأمین رطوبت بارش‏های ایران، نشریة تحقیقات کاربردی علوم جغرافیایی، 19(۲۲): ۱۰۹-127.
مسعودیان، ا. (1390). آب و هوای ایران، انتشارات شریعة توس.
مفیدی، ع.؛ زرین، آ. و کارخانه، م. (1393). بررسی الگوی گردش جوّ در طول دوره‏‏های خشک و مرطوب در سواحل جنوبی دریای خزر، مجلة ژئوفیزیک ایران، 8(۱): ۱۴۰-176.
معصوم‏پور سماکوش، ج. (1384). مطالعةسینوپتیکی خشک‏سالی‏های فراگیر در سواحل جنوبی خزر، پایان‏نامة کارشناسی ارشد، جغرافیای طبیعی گرایش اقلیم‏شناسی، دانشکدة جغرافیا، دانشگاه تهران.
Alijani, B. (1993). Rising Mechanisms of Rainfall in Iran, Journal of College of Literature, Tarbiat Moalem University, No. 85.
Alijani, B. (2010 ). Climate of Iran, Forth Edition, Payam Noor Publisher.
Asefjah, B.; Fanian, F.; Feizi, Z.; Abolhasani, A.; Paktinat, H.; Naghilou, M.; Molaei Atani, A.; Asadollahi, M.; Babakhani, M.; Kouroshniya, A. and Salehi, F. (2014). Meteorological Drought Monitoring Using Several Drought Indices (Case Study: Salt Lake Basin in Iran), Desert, 19: 155-165.
Bazrafshan, J. and Khalili, A. (2003). The Evaluation of Utility of Meteorological Drought Indices in Different Climatic Samples in Iran, Niwar Journal, 48-49: 79-93.
Brati, Gh. R. and Haidari, I. (2003). Classification of Moisture Resources of West of Iran (1984-85), Third Regional Conference and First National Conference on Climate Change, 21-23 Oct. Isfahan, PP. 16-23.
Ensafi Moghadam, T. (2007). The Evaluation of Climatic Drought Indices and Determination of Suitable Index in Salt Sea Watershed, Iranian Journal of Range and Desert Research, 14(2): 271-288.
Farajzadeh, M. (1995). Analysis and Prediction of Drought in Iran, PhD. Thesis in Natural Geography, Climatology Subject, Tarbiat Modares University.
Farajzadeh, M.; Karimi Ahmadabad, M.; Ghaemi, H. and Mobasheri, M.R. (2007). The Status of Moisture Transferring in Winter Precipitation in West of Iran (A Case Study of 3-7 January, 1996), Journal of Human Sciences Modares, 13(1): 193-217.
Farajzadeh, M.; Karimi Ahmadabad, M.; Ghaemi, H. and  Mobasheri, M.R. (2007). Studying the Moisture Flux over West of Iran: A Case Study of January 1 to 7, 1996 Rain Storm, Journal of Applied Sciences, 7: 3023-3030.
Gao, L.; Bernhardt, M. and Schulz, K. (2013). Evaluation of ERA-Interim Precipitation Data in Complex Terrain, Hydrology and Earth System Sciences, 16: 4661-4673.
Ghaedi, S.; Movahedi, S. and Masoodian, S.A. (2012). The Relationship Between Red Sea Ridge and Heavy Precipitation in Iran, Journal of Geography and Environmental Stability, 2: 1-18.
Ghavidel Rahimi, Y. (2011). Mapping and Analysis of Atmospheric Moisture Convergence During Super-Heavy Precipitation Due to Tropical Storm in Chahbahar Shore, Journal of Human Sciences Modares, 15(2): 101-118.
Jahanbakh, S. and Ghavidel Rahimi, Y. (2005). The Analysis of Spatial Distribution of Wet and Dry Periods of East Azarbaijan Stations, Geographical Space, 27: 5-17.
Karimi Ahmadabad, M. (2007). The Analysis of Resources of Precipitation Moisture in Iran, PhD. Thesis in Natural Geography, Climate Subject, Supervisor Professor Manuchehr Farajzadeh, College of Human Sciences, Tabiat Modares University.
Karimi Ahmadabad, M. and Farajzadeh, M. (2011). Moisture Flux and Spatio-Temporal Patterns of Resources of Precipitation Moisture of Iran, Journal of Applied Researches of Geographical Sciences, 19(22): 109-127.
Khadadi, M.M.; Azadi, M. and Rezazadeh, P. (2013). Moisture Sources and Its Monthly Transport on Iran and its Interaction with India's Monsoon and Subtropical High-Pressure, Journal of Iran Geophysics, 7(2): 96-113.
Khoshakhlagh, F. (1998). The Analysis of Monthly Patterns of Wet and Dry Years in Iran, PhD. Thesis in Natural Geography, Climate Subject, Supervisor Professor Hooshang Ghaemi, University of Tabriz.
Khoshhal, J.; Khosravi, M. and Nazaripoor, H. (2009). Detection of Origin and Path of Moisture of Super-Heavy Precipitation of Booshehr Province, Journal of Geography and Development, 61: 7-28.
Liu, J. and Stewart, R.E. (2003). Water Vapor Fluxes over the Saskatchewan River Basin, Journal of Hydrometeorology, 4: 944-959.
Mahmood, R.; Li, S. and Khan, B. (2010). Causes of Recurring Drought Patterns in Xinjiang China, Journal of Arid Land, 2(4): 279-285.
Mashari Eshghabad, S.; Omidvar, E. and Solaimani, K. (2014). Efficiency of Some Meteorological Drought Indices in Different Time Scales (Case Study: Tajan Basin, Iran), ECOPERSIA, 2: 441-453.
Masoodian, S.A. (2011). Climate of Iran, First Edition, Sharieh Toos Publisher.
Masoompoor Samakoosh, J. (2005). Synoptic Study of Extensive Drought in Southern Caspian Sea Shore, MSc. Thesis in Natural Geography, Climate Subject, Supervisor Professor Faramarz Khoshakhlagh, College of Geography, University of Tehran.
Mofidi, A.; Zarrin, A. and Karkhaneh, M. (2014). A Study of the Pattern of Atmospheric Circulation During Dry and Wet Periods on the Southern Shores of the Caspian Sea, Journal of Iran Geophysics, 8(1): 140-176.
Najjar Saligheh, M. and Yousefi Ramandi, R. (2015). Studying & Comparing the Efficiency of 7 Meteorological Drought Indices in Droughts Risk Management (Case Study: North West Regions), Applied mathematics in Engineering, Ma nagement and Technology, 3(1): 131-142.
Peixoto, J.P. (1973). Atmospheric Vapor Flux Computations for Hydrological Purposes, Reports on WMO/IHD Projects, Report No. 20.
Peixoto, J.P. and Kettani, M.A. (1973). The Control of the Water Cycle, Scientific American, 228: 46-61.
Poorasghar, F.; Hasanalizadeh, A. Sh.; Omidfar, M.; Eslahi, M. and Akbarzadeh, Y. (2012). The Investigation of Moisture Flux in Wet and Dry periods in West Azarbaijan Province, The Fifth International Congress of Islamic Geographer, University of Tabriz.
Peña-Arancibia, J.L.; Van Dijk, A.I.J.M.; Renzullo, L.J. and Mulligan, M. (2013). Evaluation of Precipitation Estimation Accuracy in Reanalyses, Satellite Products, and an Ensemble Method for Regions in Australia and South and East Asia, Journal of Hydrometeorology, 14: 1323-1333.
Sivandi, A. and Gharehdaghi, H. (2014). Performance Evaluation of Some Meteorological Drought Indices in South of Khuzestan Province and Zoning It Using Geographic Information System (GIS), Indian Journal of Fundamental and Applied Life Sciences, 4: 730-738.
Smirnov, V.V. and Moore, G.W.K. (1997). Spatial and Temporal Structure of Atmospheric Water Vapor Transport in the Mackenzie River Basin, Journal of Climate, 12: 681-696.
Xu, X.D.; Shi, X.Y.; Wang, Y.Q.; Peng, S.Q. and Shi, X.H. (2008). Data Analysis and Numerical Simulation of Moisture Source and Transport Associated with Summer Precipitation in the Yangtze River Valley over China, Meteorology Atmospheric Physics, 100: 217-231.
WU, H.; HAYES, M.J.; WEISS, A. and HU, Q. (2001). An Evaluation of the Standardized Precipitation Index, the China-Z Index and the Statistical Z-Score, International Journal of Climatology, 21: 745-758.
Zabihi, M.; Shahedi, K.; Darabi, H. and Safari, A. (2014). The study of Meteorological Drought in Bojnoord Plain using SPI, PNPI, NITZCHE, ZSI and DI Indices, The Fifth Conference on Water Resources Management in Iran.