The Effects of Quasi-Biannial Oscillations on Iran Winter Precipitation

Document Type : Full length article


1 Professor, Department of Climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Iran

2 PhD in Climatology, Iran Meteorological Organization, East Azarbijan Province Central Bureau, Tabriz, Iran

3 PhD Candidate in Climatology, Department of Physical Geography, Faculty of Literature and Humanities, University of Mohagegh Ardabili, Ardebil, Iran

4 Msc. Student in Climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran


Precipitation is resulted from a complex atmospheric and oceanic phenomenon and among other climatic events it has a special importance for the vital role it can play in environment and any human activity. Iran is located in the world's arid and semi-arid belt and receives more than half of its annual rainfall in the winter. Teleconnection is the alternating and continuous anomalies of atmospheric patterns and particularly pressure on the planetary scales with relative prolonged return period. Therefore, it can be considered as one of the key elements on climatic forecasts. Quasi-Biennial Oscillation (QBO), recognized in 1961,is one of the main oscillations on the planetary scale in the stratosphere layer with a mean return period of 26 months and is also one of the main components of short-term fluctuations in the climate. QBO can vary the surface weather with effect on polar atmospheric patterns. It can also affect the amount of ozone depletion on high geographical latitudes, in addition to the effect on solar cycle and connection with other teleconnections such as ENSO resulting in the climate change of the earth.
Material and methods
The total monthly precipitation from 100 synoptic stations from Iranian Meteorological Organization and QBO index data of National Oceanic and Atmospheric Administration (NOAA) during 1988-2017 were applyed as the basic input data of the study. First, rainfalls from December to February were considered as winter precipitation for the corresponding QBO index. Then, precipitation data were standardized in order to make comparable data with QBO. The normalized data of winter rainfall as dependent variable and QBO index as independent variable were entered into the STATSTICA software. Pearson correlation coefficients were performed between them in each station. No simultaneous effect may be observed due to long distance between QBO generation areas and Iran, therefore, a three months lack also was tested, and hence, the correlation coefficients were calculated between autumn QBO and winter precipitation of the stations. In order to validate of correlation coefficients, precipitation difference of the stations in the positive phases of QBO compared with negative phases. In the next step, the correlation coefficients outputs entered into the GIS environment and mentioned maps were drawn using IDW approach. Finally, the trend chart of the winter precipitation anomaly was prepared to study the impacts of autumn and winter QBO on.
Result and discussion
The results showed that there is a significant inverse relationship between the positive phases of autumn QBO with winter rainfall in most stations, especially in the central and southern parts of Iran. The increase in the intensity of the positive phases in autumn QBO causes subnormal winter rainfall in the central and southern parts of the country. On the other hand, the occurrence of negative autumn QBO causes a minor increase in the rainfall rates of most parts of Iran. However, the occurrence of rainy winter in the case of autumn negative phases is not conclusive. But, the winter time extreme negative phases of QBO index lead to a significant decrease in the precipitation rates of most areas of the country especially southern and western parts, while the positive phases lead to minor decrease (increase) in the precipitation rates of the southern (northern)parts of Iran. The separate study of positive and negative phases of QBO in autumn and winter seasons revealed a contradictory effect on winter rainfalls in different parts of Iran, and in short, the effect of QBO on winter precipitation is lower in northern parts. The final results showed that the occurrence of rainy winter has been linked to the mild phases of QBO index in the autumn and winter. It can be concluded that the QBO teleconnection is one of the main factors controlling winter precipitation in different parts of the country, especially in the southern, central and western sectors. The main and tangible role of QBO is a reduction in the amount of precipitation. Meanwhile, there is no significant relationship between QBO index and winter precipitation in the northern parts of Iran, especially the northwest and Caspian Sea coasts.
In general, the correlation between the autumn and winter QBO index and winter precipitation is negative in the western half and positive in the eastern and southern parts of the country. Thus, by moving from the extreme negative values of QBO to the positive ones, a relative partial reduction is observed in the precipitation rate of northwest regions, western sides of Alborz Mountains and the western parts, respectively. There is an increase in other parts especially in the Caspian Sea coasts and the southern Iran. The autumn phases of QBO index are slightly more related to winter precipitation. Unlike the previous condition, there is a negative correlation between the positive phases of QBO and winter precipitation rates. This is more significant in most regions especially in central and southern parts of Iran. The highest correlation coefficient (-0.65 to -0.82) was observed on the shores of the Persian Gulf and the positive phases of this index happened to decrease the precipitation rates in the central and southern regions of Iran. There is no significant relationship between the negative phases of autumn QBO and winter precipitation rates. On the other hand, positive phases of winter QBO can reduce precipitation rate in south and southwest regions and partially increased rainfalls in the northwest of Iran. However, the amount of rainfall decrement is more significant in the southern regions. Also, the occurrence of negative phases in the winter reduced the precipitation rate in most parts especially in the western parts, the coast of Persian Gulf and some parts of the eastern Iran. The occurrence of rainy winter has always been linked to the gentle phases of QBO index and it has not been associated with strong positive and negative phases. It seems that the extreme positive phases in autumn and the extreme negative phases in winter time have more significant effects on the reduction of rainfall in most parts of Iran especially in southern regions.


امیدوار، ک. (1389). اقلیمشناسی دینامیک، انتشارات دانشگاه یزد.
بیات ورکشی، م. و قیصری، پ. (1397). تأثیرپذیری تراز آب زیرزمینی از پدیدة انسو، تحقیقات منابع آب ایران، ۱۴(۲): 1-۱۱.
جهان‏بخش اصل، س.؛ ساری صراف، ب.؛ قائمی، ه. و پوراصغر، ف. (1390). بررسی تأثیر دوقطبی اقیانوس هند بر تغییرپذیری بارش‏های فصلی استان‏های جنوبی کشور، فصل‏نامة تحقیقات جغرافیایی، ۲۶(۴): 27-۴۶.
خجسته غلامی، و. (1397). هم‏پیوندی اثر انسو و نوسان شبه‏دوسالانه بر بارش ایران، پایانامة کارشناسی ارشد، دانشگاه تبریز، دانشکدة برنامه‏ریزی و علوم‏ محیطی، گروه آب و هواشناسی، ص 1-69.
خسروی، م. (1383). مطالعة روابط بین الگوهای چرخشی جوی کلان‏مقیاس نیم‏کرة شمالی از جمله AO با خشک‏سالی‏های سالانة سیستان و بلوچستان، جغرافیا و توسعه، ص 167-۱۸۸.
دارند، م. (1393). پایش خشک‏سالی ایران به کمک شاخص شدت خشک‏سالی پالمر و ارتباط آن با الگوهای پیوند از دور جوی- اقیانوسی، فصل‏نامة تحقیقات جغرافیایی، ۲۹(۴): 67-۸۲.
دوستان، ر. (1397). دورپیوند جهانی و دورپیوندهای منطقه‏ای ایران، مجلة فیزیک زمین و فضا، 44(۳): 625-۶۴۰.
صفرراد، ط.؛ رورده، ه.ا. و شعبان‏پور نوذری، س. (1396). ارتباط الگوهای پیوند از دور بر چرخة آب در اتمسفر ایران، فصلنامةعلمی-پژوهشی و بینالمللی انجمن جغرافیای ایران، ۱۵(۵۴): 263 -۲۷۴.
عزیزی، ق. (1379). النینو و دوره‏های ترسالی‏- خشک‏سالی در ایران، پژوهش‏های جغرافیایی،  38: 71-۸۴.
فرج‏زاده اصل، م.؛ علیجانی، ب.؛ احمدی، م.؛ مفیدی، ع.؛ بابائیان، ا. و قویدل رحیمی، ی. (1392). بررسی وردایی الگوهای پیوند از دور و اثر آن‏ها بر بارش ایران، نشریة پژوهش‏های اقلیمشناسی، ۴(۱۵ و ۱۶): 31-۴۵.
قاسمیه، ه.؛ بذرافشان، ا. و بخشایش‏منش، ک. (1396). پیش‏بینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکة عصبی مصنوعی در حوزة فلات مرکزی ایران، فیزیک زمین و فضا، 43(۲): 405-۴۱۸.
لکزاشکور، ق.؛ روشن، غ. و شاهکویی، ا. (1397). واسنجی اثر الگوها و شاخص‏های پیوند از دور بر رخداد خشک‏سالی‏های استان گلستان، فصل‏نامة برنامهریزی و منطقه‏ای، 8(۲۹): 107-۱۲۴.
محمودی، پ؛‏ علیجانی، ب.؛ مسعودیان، ا. و خسروی، م. (1394). رابطة بین الگوهای پیوند از دور و یخبندان‏های فراگیر ایران، جغرافیا و توسعه، 40: 175-۱۹۴.
مسعودیان، س.‏ا. (1388). نواحی بارشی ایران، مجلة جغرافیا و توسعه، 7: 79-۹۱.
مسعودیان، ا. و اکبری، ط. (1388). شناسایی الگوهای پیوند از دور نیم‏کرة شمالی بر دمای ایران، مجلةپژوهشی دانشگاه اصفهان، ص 117-۱۳۲.
مسعودیان، س.‏ا. (1390). آب و هوای ایران، مشهد: انتشارات شریعه توس مشهد.
مفیدی، ع. (1385). تحلیل دینامیکی نقش گردش بزرگ‏مقیاس پوش‏سپهری در کاهش اوزون پوش‏‏سپهری، فصل‏نامة علمی‏- پژوهشی سرزمین، ۳(۱۰): 127-۱۵۵.
Adam, A.; Scaif, A. and Marshall, G. (2009). Impact of the QBO on surface winter, Geophysical Research, 114: 1-6.
Alijani, B.; Brien, J.O. and Yarnal, B. (2008) .Spatial analysis of precipitation intensity and concentration in Iran, Theoretical and Applied Climatology, 94: 107-124.
Angstrom, A. (1935). Teleconnections of Climatic Changes in Present Times, Geografika Annular J., 17: 242-258.
Asbaghi, Gh.; Joghataei, M. and Mohebalhojeh, A. (2016). Impact of the QBO on the North Atlantic and Mediterranean storm tracks, Geophysical Research Letters, pp. 1-8.
Azizi, G. (2000). ElNINO and moist-droughts periods in IRAN, Research Geography, 38: 71-84.
Balachandron, S. and Guhathakurta, P. (1999). On the Influence of QBO over North Indian Ocean Storm and Depression Tracks, Meteorology and Atmospheric Physics, 70: 111-118.
Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J. and Holton, J.R. (2001). The Quasi Biennial Oscillation, Review of Geophysics, 39(2): 179-230.
Bayatvarkeshi, M. and Geysari, P. (2018). The Susceptility of Groundwater Budget from Enso Phenomenon, Iran Water Resources Research, 2: 1-11.
Beig, G.; Fadnavis, F. and Polade, S.D. (2008). Features of ozone QBO in the vertical structure of tropics and subtropics, Meteorology and Atmospheric Physics, pp. 221-231.
Bo, C.; Shuting, Y. and Marianne Sloth, M. (2016). Do strong warm ENSO events control the phase of the stratospheric QBO? Geophysical Research Letters, 43: 10489-10495.
Brazdil, R. and Zolotkrylin, A.N. (1995). The QBO Signal in Monthly Precipitation Fields Over Europe, Theoretical and Applied Climatology, 51: 3-12.
Calvo, N.; Giorgetta Marco, A.; Garcia Herrera R. and Manzini, E. (2009). Nonlinearity of the Combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM 5 Simulations , Journal of geophysical research, 114(131): 11-19.
Chaim, I.; Garfinkel, D. and Hartmann, L. (2011). The Influence of the Quasi-Biennial Oscillation on the Troposphere in winter in a Hierarchy of Models. Part II: Perpetual Winter WACCM Runs, Journal of the Atmospheric Siences, 68(9): 2026-2041.
Chrisopher, C., David W., Matthew, H., and Amihan, H. (2003). On the relationship between QBO and Tropical Deep Convection, Journal of Climate, 16: 2552-2568.
Darand, M. (2014). IRAN Drought monitoring using Palmer drought Severity index and its relation to atmospheric-oceanic teleconection patterns, Geographical Researches quarterly journal, 115: 68-72.
Doustan, R. (2018). Teleconnections of World and Teleconnections Region of Iran, Journal of Earth and Space Physics, pp. 625-640.
Farajzadeh Asl, M.; Alijani, B.; Ahmadi, M.; Mofidi, A.; Babaian, I. and Gavidel Rahimi, Y. (2013). The study of Teleconection patterns and their effects on Precipitation of IRAN, Journal of Climatology Research, 15: 31-45.
Gasemyieh, H.; Bazrafshan, A. and Bakhsayeshmanesh, K. (2007). Monthly Precipitation Forecasting using Teleconection patterns and artificial Neural Network in the Central region of Iran, Journal of Earth and Space physics, 2: 405-418.
Hansen, F.; Matthes, K. and Wahl, S. (2016). Tropospheric QBO-ENSO Interactions and Differences between the Atlantic and pacific, Journal of climate, 29: 1353-1358.
Hibbins, R.E.; Javvis, M.J. and Frod, E.A.K. (2009). QBO effects on Antarctic mesospheric wind and polar vortex, Geophysical research Letters, 36: 1-6.
Jahanbakhsh Asl, S.; Sari sarraf, B.; Gaemi, H. and Pourasghar, F. (2010). The impact of Indian Ocean bipolar effect on seasonal variability in the southern provinces of Iran, Journal of research Geograhy, 4: 27-46.
James, A; Theodore, G.S. and John, F.S. (2010). Influence of the QBO on the Extra-tropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data, Journal of the Atmospheric Science, 67 (5): 1402-1419.
Jianping, H.; Kaz, H. and Shabbar, A. (1998). The relationship between the NAO and ENSO, Geophysical Research Letters, 25: 2707-2710.
Jihoon, S.; Wookap, C.; Daeok, Y.; Doo-Sun, R.P. and Jin Young, K. (2013). Relationship between the stratospheric QBO and the spring rainfall in the western north pacific, Geophysical Research Letters, 40: 5949-5953.
Jones, J.; Rind, D.; Balachandran, N. and Schmidth, G.A. (2014). The QBO in two GISS global climate models, Journal of Geophysical Research, 119: 1-27.
Khojasteh Gholami, V. (2018). Combined Impacts of QBO and ENSO on Precipitation of Iran, Thesis of M.A., University OF Tabriz, Faculty of Planning and Environmental Science, Department of Climatology, pp. 1-69.
Khosravi, M. (2003). Study of the relationship between atmospheric- scale cyclic patterns including AO with annual Droughts of Sistan and Baluchestan Region, Research Geography and Development, pp. 167-188.
Kunze, M. and Labitzke, K. (2012). Interactions between the stratosphere, the sun and the QBO during the northern summer, Journal of Atmospheric and Solar Terrestrial physics, pp. 141-146.
Lakzasakour, G.; Roushan, G. and Sahkouyi, E. (2018). Study of the effect of teleconnection patterns and indicators on Drought event of Golestan Province, Journal of Planning and Regional, pp. 107-124.
Lee, See.; Shelow, D.M.; Thompson, A.M. and Miller, S.K. (2010). QBO and ENSO Variability in Temperature and Ozone From SHADOZ, Journal of geophysical research, DOI:10.1029, pp. x-1-x-38.
Mahmoudi, P.; Alijani, B.; Masoudian, A. and Khosravi, M. (2015). The Relationship Between the patterns of teleconection and sweeping ice-over of IRAN, Research Geography and Development, 40: 175-194.
Martin, W. and Matthew, H.H.A. (2003). On the Relationship between the QBO and Tropical Deep Convection, Journal of climate, 16: 2552-2568.
Masoudian, A. (2009). Delineation regions of Iran, Research Geography and Development, 7: 79-91.
Masoudian, A. (2011). Climate of Iran, Hedge, Iran, Publishing Sharia Toos Mashha, pp. 1-277.
Masoudian, A. and Akbari, T. (2009). Characterization of North hemisphere Teleconection patterns on Iran temperature, Research Journal of Isfahan University, pp. 117-132
Mofidi, A. (2006). Dynamic analysis of the role of big circulation in the scale of Quarterly, Journal of Land Research, 10: 127-155.
Murat, T, and Faize, S. (2009). Spatio-temporal variability of precipitation total series over Turkes, International Journal of Climatology – Int .j Climatology, 29: 1056-1074.
Nazemosadat, M.J. and Cordery, I. (2000). On the relationships between ENSO and autumn rainfall in Iran, International Journal of Climatology, pp. 47-61.
Nazemosadat, M.J.; Samani, N.; Barry, D.A. and Molaiiniko, M. (2006). ENSO forcing on climate change in IRAN, Iranian Journal of Science and Technology, 30: 555-565.
Noorafshan, M. and Gheiby, A. (2012). ENSO Events , Rainfall variability and the potential of SOI for the Seasonal precipitiation predictions in Iran, American Journal of climate change, pp. 34-45.
Omidvar, K. (2010). Dynamic Climatology, Hedge, Iran, pp. 1-389.
Ouyang, R.; Liu., W.; Fu, G.; Liu. C.; Hu. L. and Wang, H. (2014). Linkes between ENSO and PDO signals and precipitiation, stream flow in China during the last 100 years, Hydrology and Earth Systems Science, 18: 3651-3661.
Peter, W. (2011). The Influence of the QBO and ENSO on the Northern Hemisphere winter stratospheric polar vortex, Atmospheric, Oceanic and planetary physics, University of oxford, pp. 1-61.
Richter, J.; Deser, C. amd Sun, L. (2015). Effects of Stratospheric Variability on ELNINO teleconnections, Environmental Research Letters, pp. 1-10.
Roy, I. and Haigh, J.D. (2011). The influence of solar variability and the QBO on lower atmospheric temperatures and sea level pressure, Atmos, Chem. Phys, 11: 11679-11678.
Safarrad, T.; Rordeh, H. and Sabanpour nouzari, S. (2017). Relationship Between Teleconection Patterns and water cycle in the Atmosphere Of IRAN, Quarterly Journal of International Geographic Society of Iran, 54: 263-274.
Seppala, A.; Maliniemi, V.; Asikainem, T. and Mursulec, K. (2013). QBO depended relation between electron precipitation and winter time surface, Journal of geophysical research, 118: 6302-6310.
Shouyi, D.; Wen, C.; Juan, F.; Hans, F. and Raf, G. (2016). Combined Impacts of PDO and two types of Lanina on climate Anomalies in Europe, Journal of climate, 30: 3253-3278.
Upperbrink, J. (1997). Seasonal Climate Prediction Science, 277: 1949-1964.
Yoshio, K.; Kevin, H. and Shingo, W. )2011(. The Quasi-Biennial Oscillation in a Double CO2 Climate, Journal of the Atmospheric Sciences, 68(2): 265-283.
YoungIn, W. and Jang, M. (2013). Intensity of climate variability derived from the satellite and MERRA reanalysis temperatures: AO, ENSO, QBO, Journal of Atmospheric and Solar-Terrestrial physics, pp. 15-27.
Yuna, L., Seok, W., Andrew G., Harry, H., Kyong, H. (2019). Influence of the QBO on MJO prediction skill in the sub seasonal-to-seasonal prediction models, Climate Dynamics, pp. 1-15.