Effects of Climate Change on Grape Tree Phenological Date Change in Iran

Document Type : Full length article

Authors

1 PhD Student of Agricultural Climatology, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran

2 Associate Professor, Department of Climatology and Geomorphology, School of Geography and Environmental Science, University of Hakim Sabzevari, Sabzevar, Iran

3 Assistant Professor, Department of Climatology and Geomorphology, School of Geography and Environmental Science, University of Hakim Sabzevari, Sabzevar, Iran

Abstract

Introduction
Climate change and global warming will endanger the production of agricultural products and food security in the world. The horticulture sector and fruit trees are affected by the climate because of the long distance to the production. Any changes in temperature patterns will change the length of the growth season and dates of the phonological and physiological stages. Air temperature is often considered as the main factor affecting the phonological phases of fruit trees in temperate climates. The increase in the Earth's surface temperature due to greenhouse gas emissions has created a phenomenon called climate change. The perceived effects of climate change on the daily lives of communities around the world have raised the public's attention to climate change. The transformation of the climate and its consequences from different aspects on the planet are not covered by anyone. Today, the challenge of climate change and its effects is the most important challenge facing the country. Fruit trees are subjected to climate change as one of the main sources of agricultural economics and employment in the country. Given the importance of grape product in the country's economy, it is essential to study the effects of climate change on this tree in Iran. Therefore, the present study aimed at revealing the effects of climate change on the time of phonological stages of Grape tree in Iran based on the output of new CMIP5 models and representative concentration pathways scenarios (RCP).
Materials and methods
The realm of this research is the cultivation of grape tree in Iran. The major areas of grape tree cultivation in Iran are located in the northern, western, and eastern regions of cold weather. In the present study, two types of data were used to analyze the process using statistical-analytical method. The data of the baseline or past period have been extracted from IRIMO by the actual statistics of 55 meteorological stations in vineyard cultivation areas. These observation data include the statistical period (1985-2005). Future data as simulated data are based on the output of CMIP5 models. These data have been processed in two routings RCP8.5 and RCP4.5 from 2020 to 2090. In the upcoming period, the models (BCC-CSM1.1, MRI.CGCM3, GFDL-CM3, MIROC-ESM and (GISS-E2-R from the CMIP5 models of the MarksimGCM database were used in the RCP8.5 and RCP4.5 scenarios). The results showed that the MRI.CGCM3 model has a higher ability to simulate the future than other models.
Results and discussion
The results showed that the MRI.CGCM3 model, with the higher weight, than the other general circulation models proposed, has a higher ability to simulate temperature and precipitation behavior in the future period relative to the base period. The model has the minimum, maximum and precipitation temperature for weight of 0.40, 0.39 and 0.29, respectively. Therefore, from the model data, in-built comparison model of the CMIP5 is based on RCP radiative forcing scenarios. It was used to assess and detect the effects of climate change in the upcoming period. The results showed that the air temperature in the pessimistic and middle run pattern of RCP8.5 and RCP4.5, respectively, would increase compared with the baseline period. This increase in the pessimism pattern was higher than the midterm pattern. The changes in the far future period (2056-2090) will be greater than the upcoming mid-term (2020-2055). The magnitude of these changes in the RCP8.5 induction trajectory in the period (2020-2055) and (2056-2090) at the selected station level was 1.6 and 2.4 degrees Celsius, respectively, and in the RCP4.5 induction line , Is 1.2 and 2.3 degrees Celsius, respectively, relative to the base period.
Conclusion
Output of the overall model of the MRI.CGCM3 has less simulation abilities in illustrating the climate change of the upcoming period. It has errors that are more than those of the observation period or the baseline period. The results showed that in the most pessimistic case in the middle and distant future, 1.6 and 4.2 degrees Celsius, the minimum temperature would increase compared to the baseline period. The results showed that the most changes occur during the occurrence of phonological stages in cold regions and high latitudes of vineyard cultivations. Due to the increase in the temperature of the air in the future period, it will also alter the date of occurrence of the phonological stages of the grapevine. Due to the increase in the air temperature of the future period, the threshold of biota will occur ahead, and as a result, the vinegrowing period will begin earlier than the previous period. Therefore, in a pessimistic evolutionary pattern, the threshold of biota timing will be ahead in the middle of the future, 8 to 16 days, and the flowering time will be 7 days to 16 days. Therefore, one of the major effects of climate change on fruit trees will evolve in the form of a change in the time of occurrence of the phonological stages. In the future period, the deviation from the optimal temperature conditions of the phonological stages of the grapevine will be increased. In the futures period, the amount of deviations and temperature anomalies will increase significantly from the optimum temperature range over the base period. The regions of northwest and northeast will have the highest deviation from optimal temperature conditions. The range of areas with high temperature deviation was observed at the phonological stage of germination and flowering. The flowering stage shows the highest deviation from optimal temperature conditions. The amount of deviation from optimal temperature conditions will be increased from the south to the north of the grapevine area .
Changes and displacement of the threshold times of the grapevine biomass increase the risk of possible dangers of frost and late frost in most vineyard cultivation areas, especially in the northern half. It is important to select species and varieties resistant to and adapted to the climatic conditions of each region. In the future period, the range of cultivars of the grapevine will decrease. In the future, the final area of the grapevine area will be limited to 12.64824123 hectares. In fact, due to the rising air temperature in the future, areas susceptible to Ango cultivation in the southern, central, and eastern regions of the grapevine area will lose their climate capability.

Keywords


احمدی، ح. (1396). بررسی اثرات تغییر اقلیم بر روی درخت سیب در ایران، پایان‏نامة دکتری، دانشکدة جغرافیا و علوم محیطی، گروه آب و هواشناسی، دانشگاه حکیم سبزواری، سبزوار.
احمدی، ح.؛ فلاح قالهری، غ. و باعقیده، م. (1398). پیش‏نگری اثرات تغییر اقلیم بر بارش فصلی مناطق سردسیر ایران براساس سناریوهای واداشت تابشی RCP))، نشریة فیزیک زمین و فضا، 45(1):  ۱۷۷-196.
احمدی، ح.؛ فلاح قالهری، غ.؛ باعقیده، م. و امیری، م. ا. (1397). بررسی اثرات تغییر اقلیم بر الگوی انباشت گرمایی مناطق کشت درخت سیب در ایران، نشریة تحلیل فضایی مخاطرات محیطی، ۵(2): ۳۵-54.
احمدی، ک.؛ قلی‏زاده، ح.؛ عبادزاده، ح.؛ حاتمی، ف.؛ حسین‏پور، ر.؛ کاظمی‏فرد، ر. و عبدشاه، ه. (1395). آمارنامة کشاورزی، سال زراعی 1393-1394، ج ۳: محصولات باغبانی، وزارت جهاد کشاورزی، معاونت برنامه‏ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، ص ۱-۲۰.
بابائیان، ا. و کوهی، م. (1391). ارزیابی شاخص‏های اقلیم کشاورزی تحت سناریوهای تغییر اقلیم در ایستگاه‏های منتخب خراسان رضوی، نشریة آب و خاک (علوم و صنایع کشاورزی)، 26(4): ۹۵۳-967.
تیرگرفاخری، ف.؛ علیجانی، ب.؛ ضیاییان فیروزآبادی، پ. و اکبری، م. (1396). شبیه‏سازی رواناب ناشی از ذوب برف تحت سناریوهای تغییر اقلیمی در حوضة ارمند، اکوهیدرولوژِی، 4(2): ۳۵۷-368.
خوشخوی، م.؛ شیبانی، ب.؛ روحانی، ا. و تفضلی، ع. (1387). اصول باغبانی، چ ۱۷، شیراز: انتشارات دانشگاه شیراز.
حیدری بنی، م.؛ یزدان‏پناه، ح. و محنت‏کش، ع.‏ا. (1397). بررسی اثرات تغییر اقلیم بر عملکرد و مراحل فنولوژیکی کلزا (مطالعة موردی: استان چهارمحال و بختیاری)، پژوهش‏های جغرافیای طبیعی، 50(2): ۳۷۳-389.
زرین، م. و فراهانی، ح.‏ر. (1394). راهنمای جامع و کاربردی باغبانی، تهران: انتشارات آموزش فنی و حرفه‏ای مزرعة زرین.
صمدی یزدی، ب. (1396). کاربرد فناوری‏های آینده‏نگر در تأمین امنیت غذایی در ایران و جهان، مجلة پژوهش‏های راهبردی در علوم کشاورزی و منابع طبیعی، 2(1): ۱۵-28.
فلاح قالهری، غ. و احمدی، ح. (1396). بررسی روند تغییرات نیازهای سرمایی و طول مراحل فنولوژیک درخت سیب (مطالعة موردی: منطقة کرج)، نشریةهواشناسی کشاورزی، 5(1): ۵۷-70.
قهرمان، ن.؛ بابائیان، ا. و طباطبایی، س.‏م. (1395). بررسی اثرات تغییر اقلیم بر نیاز آبی و طول دورة رشد گیاه نیشکر تحت سناریوهای واداشت تابشی، نشریة حفاظت منابع آب و خاک، 6(1): ۶۳-73.
یعقوب‏زاده، م.؛ احمدی، م.؛ برومندنسب، س. و حقایقی مقدم، س. ا. (1395). اثر تغییر اقلیم بر روند تغییرات تبخیر- تعرق در طی دورة رشد گیاهان مزارع آبی و دیم با استفاده از مدل‏های جفت‏شده، نشریة پژوهش آب در کشاورزی، 30(4): ۵۱۲-523.
Ahmadi, H. (2017). Investigating the effects of climate change on apple tree in Iran, PhD thesis, Faculty of Geography and Environmental Sciences, Department of Climatology, Hakim Sabzevari University. Sabzevar.
Ahmadi, H.; Fallah Ghalhari, GH. and Baaghideh, M. (2019). Projection of Climate Change Impacts on Seasonal Precipitation in Iranian Cold Regions Based on Radiative Forcing Scenarios (RCP), Journal of the Earth and Space Physics, 45(1): 196-177.
Ahmadi, H.; Fallah Ghalhari, GH.; Baaghideh, M. and Amiri, M.A. (2018). Investigating the effects of climate change on the heat accumulation pattern of Apple tree cultivations in Iran, Journal of Environmental Hazards Spatial Analysis, 5(2): 54-35.
Ahmadi, K.; Gholizadeh, H.; Ebadzadeh, H.; Hatami, F.; Hosseinpour, R.; Kazemi Fard, R. and Abdeshah, H. (2016). Statistics of Agricultural Letter, Crop Year 2014-2015, Horticultural Products, Ministry of Agricultural Jihad, Deputy of Planning and Economics, Information and Communication Technology Center. pp. 1-20.
Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A. and Furlanello, C. (2019). The impact of climate change on grapevine phenology and the influence of altitude: A regional study, Agricultural and forest meteorology, 271: 73-82.
Babaian, A. and Koohi, M. (2012). Evaluation of Agricultural Climate Indicators under Climate Change Scenarios in Selected Stations in Khorasan Razavi, Water and Soil Journal (Agricultural Sciences and Technology), 26(4): 967-953.
Fallah Ghalhari, GH. and Ahmadi, H. (2017). Trend analysis of phenological stages length and chilling requirements of apple tree (Case study: Karaj station), Journal of Agricultural Meteorology, 5(1): 57-70.
Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Vitaliotou, M.; Lalas, D.P.; Theloudis, I. and Zavras, V. (2017). Climate change impacts and adaptation options for the Greek agriculture in 2021–2050: A monetary assessment, Climate Risk Management, 16: 164-182.
Ghahraman, N.; Babayan, A. and Tabatabaei, S.M. (2016). Investigating the effects of climate change on water requirement and growth period of cane sugar under radiation induced scenarios, Journal of Water and Soil Conservation, 6(1): 73-63.
Grab, S. and Craparo, A. (2011). Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agricultural and Forest Meteorology, 151: 406-413.
Heydari Bani, MH.; Yazdanpanah, MH. and Mohendkash, AS A. (2018). Investigation of Climate Change Effects on Yield and Phenological Stages of Rapeseed (Case Study: Chaharmahal and Bakhtiari Province). Physical Geography Researches, 50(2): 389-373.
Hidalgo-Galvez, M.D.; García-Mozo, H.; Oteros, J.; Mestre, A.; Botey, R. and Galán, C. (2018). Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes, Theoretical and applied climatology, 132(1-2): 263-273.
IPCC (2014). Summary for policymakers. In: Ipcc. Climate change, impact, adaptation and vulnerability. Contribution of working group 2 to the Fifth Assessment Report of the Intergovernment Panel of Climate Change, pp. 132. Cmbridge, UK andNew York, USA, Cambridge University Press.
Jones, P.G. and Thornton, P.K. (2013). Generating downscaled weather data from a suite of climate models for agricultural modelling applications, Agricultural Systems, 114: 1-5.
Khoshkhooy, M.; Shibani, B.; Rouhani, A. and Tafazli, A.S. (2008). Principles of gardening, Shiraz University Press, Seventh Edition, Shiraz.
Machovina, B. and Feeley, K.J. (2013). Climate change driven shifts in the extent and location of areas suitable for export banana production. Ecological Economics, 95: 3-95.
Mosedale, JR.; Wilson, RJ. and Maclean, IMD. (2015). Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions, PLoS ONE 10(10): e0141218. doi:10.1371/journal.pone.0141218.
Nouri, M.; Homaee, M.; Bannayan, M. and Hoogenboom, G. (2017). Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural Water Management, 186: 108-119.
Parker, L.E. and Abatzoglou, J.T. (2018). Shifts in the thermal niche of almond under climate change, Climate Change, 147: 211-224.
Ramirez, F. and Kallarackal, J. (2015). Responces of fruit trees to the global climate change, Springer Cham Heidelberg New York, Dordrecht London. ISBN. 978-3-319-14199-2.
Ramos, M.C. (2017). Projection of phenology response to climate change in rainfed vineyards in north-east Spain, Agricultural and forest meteorology, 247: 104-115.
Samadi Yazdi, B. (2017). Application of Prospective Technologies in Food Security in Iran and the World, Journal of Strategic Research in Agricultural Science and Natural Resources, 2(1): 28-15.
Sapkotaa, T.B.; Vetter, S.H.; Jata, M.L.; Sirohic, S.; Shirsathd, P.B.; Singhe, R.; Jatf, H.S.; Smithb, P.; Hillierg, J. and Stirling, C.M. (2019). Science of the Total Environment, 655:1342-1354.
Sapkota, T.B., Vetter S.H., Jat, M.L., Sirohi, S., Shirsath, p.B., Singh, R., Jat, H.S., Smit, P., Hillier, j. & Stirling, C.M.(2019). Cost-effective opportunities for climate change mitigation in Indian agriculture. Science of the Total Environment, 655:1342-1354.Shrestha, S.; Bach, T.V. and Pandey, V.P. (2015). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios, Environmental Science & Policy, 61: 1-13.
Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; Ravindranath, N.H.; Rice, C.W.; Robledo Abad, C.; Romanovskaya, A.; Sperling, F. and Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU). In: Edenhofer, O., PichsMadruga, R., Sokona, Y.,Farahani, E., Kander, S., Seyboth, K. (Eds.), Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kindgdom and New York, NY, USA.
Tirgar Fakhri, F.; Alijani, B.; Ziaeian Firouzabadi, P. and Akbari, M. (2017). Simulation of Snow Melt Runoff under Climate Change Scenarios in Armand Basin, Ecohydrology, 4(2): 368-357.
Wang, B.; Liu, D.L.; Asseng, S.; Macadam, I. and Yu, Q. (2015). Impact of climate change on wheat floering time in sastern Australia. Agriculture and forest Meteorology, 210: 11-21.
Wang, H.; Ge., Q.; Dai, J. and Tao, Z. (2015). Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. Int J Biometeorology, 59: 961-969.
Yaqoubzadeh, M.; Ahmadi, M.; Boroumand Nasab, S. and Fatemeh Moghaddam, S.U. (2016). The Effect of climate change on evapotranspiration change during growth of plants in hydroponic and dryland plants using paired models, Journal of Water Research in Agriculture, 30(4): 523-512.
Zarrin, M. and Farahani, H.R. (2015). Comprehensive and Applied Gardening Guide, Publications of Technical and Vocational Education of Zarrin Farm, First Printing, Tehran.
Zhao, L.; Xu, J.; Powell, A.M. and Jiang, Z. (2015). Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years, Theoretical and Applied Climatology, 122: 259-270.