Descriptive Characteristics of Tropopause on the Atmosphere of Iran in Transitional seasons

Document Type : Full length article

Authors

1 Professor in Climatology , Department of Geography, University of Zanjan

2 null

3 Phd Candidate of Climatology (Climate Change), University of Zanjan, Zanjan, Iran.

Abstract

Extended Abstract
Introduction
Monitoring the tropopause features over a geographic area is important for a number of interrelated reasons. From a climatological point of view, it is important to investigate the behaviour of the tropopause charactreristics for a long term, so that to detect any increased or decreased trends. From a dynamic point of view, it is essential to define the tropopause hieght, in order to explore the stratosphere—troposphere exchange taking place over a geographic area that may be responsible for changes in the chemical composition of the atmosphere. Over the past two decades, there has been growing interest in the tropopause charactreristics among the atmospheric scientific community. It is now broadly accepted that the tropopause plays a key role in a variety of atmospheric and climatic phenomena.
Materials and methods
Compared to studies performed globally, in Iran a limited number of studies concerning the tropopause have been conducted. Moreover, the methods have been used and the length of the dataset were often inadequate. Therefore, in the present study, for the detection of tropopause, the daily data of Temperature, and Geopotential Height from the European Centre for Medium-Range Weather Forecasts (ECMWF) for 700 to 50 hpa with a spatial resolution of 0.25 × 0.25 longitude/latitude from 1979 to 2018 was adopted. Accordingly, 2491 cells have been covered across Iran. The LRT was used to detect tropopause. the tropopause is defined as ‘‘the lowest level at which the lapse-rate decreases to 2 /km or less, provided that the average lapse-rate between this level and all higher levels within 2 km does not exceed 2C/km. In this study, in addition to the tropopause pressure level, the tropopause height (m) was also evaluated during this period.To obtain better cognitive knowledge about tropopause, the factors that were likely to be related to the spatial changes in height of tropopause were investigated. To achieve this goal, the relationship between tropopause pressure and spatial variables (e.g. longitude, latitude, and elevation) was assessed by general and partial linear correlation ceofeicents. In addition to the characteristics of temperature at the lower and upper levels of the tropopause, the difference in temperature between these two levels on the atmosphere of Iran and the characteristics of the minimum, maximum, average, as well as the temperature range of the earth's surface were evaluated and their relationship with tropopause pressure levels and height levels was assessed.
Results and discussion
Investigating the characteristics of tropopause on the atmosphere of the studied area in the under investigation period (1979 to 2018) and its related factors in the autumn and spring months showed that in the months of these two seasons, various factors affecting height and pressure levels of tropopause are diffrnt and in both seasons have different characteristics. In all spring and autumn except for September, the height of the tropopause is decreasing as the latitude increases, but in October and November, the rate of change was greater than in the other months. In all the months of these two seasons (except September), the highest level of the tropopause taking place in the south-east of the country, whilst the lowest level of pressure occured in the north-west of the country. Investigating the changes in tropopause height and tropopause pressure levels also showed that they were not consistent in the under investigation seasons, so that in places with similar pressure levels, observed elevations were different. the tropopause pressure levels have a strong relation with the latitude, but changes in the tropopause height did not show a regular relationship with latitude.Tropopause height changes are mostly irregular in spring and autumn, and in parts of the country, it is almost dependent on longitude. In the spring and autumn periods, the high and low tropopause levels are among the most influential factors on tropopause. Among the cases that were related to the tropopause were surface temperatures and their characteristics in the spring and autumn seasons. During these two seasons, it was found that the potantial relationship of surface temperatures with tropopause pressure and elevation levels, especially at high latitudes, is low, but in lower latitudes, due to limited variation in the surface temperature, the potantial connection of tropopause and surface temperatures are higher than other parts of the country. In the months of the spring and October and November, it was revealed that the potantial correlation between tropopause pressure and elevation levels with local factors was low, but in September in parts of the country, the effects of surface elevations on the levels of tropopause pressure is much more significent.
Conclusion
The results of the study of the tropopause and its related factors showed that the trend of tropopause pressure changes in the vicinity of latitude is decreasing with increasing the latitude. But the tropopause height is not aligned with its pressure levels, and in most areas, it is in the vicinity of Longitude. Among the studied factors, the low and high levels of tropopause have the highest impact on the tropopause, and the effects of surface temperature and other examined cases have not a noticable impact.
he results of the study of the tropopause and its related factors showed that the trend of tropopause pressure changes in the vicinity of latitude is decreasing with increasing the latitude. But the tropopause height is not aligned with its pressure levels, and in most areas, it is in the vicinity of Longitude. Among the studied factors, the low and high levels of tropopause have the highest impact on the tropopause, and the effects of surface temperature and other examined cases have not a noticable impact.
he results of the study of the tropopause and its related factors showed that the trend of tropopause pressure changes in the vicinity of latitude is decreasing with increasing the latitude. But the tropopause height is not aligned with its pressure levels, and in most areas, it is in the vicinity of Longitude. Among the studied factors, the low and high levels of tropopause have the highest impact on the tropopause, and the effects of surface temperature and other examined cases have not a noticable impact.

Keywords


برهانی، ر.؛ احمدی گیوی، ف.؛ قادر، س. و محب‏الحجه، ع. (1397). مطالعة فراوانی و توزیع تاشدگی‏ وردایست و تغییرات فصلی آن در سال‏های 2013-2015 با تأکید بر منطقة جنوب ‏غرب آسیا، مجله فیزیک زمین و فضا، 607-624.
برهانی، ر. و احمدی گیوی، ف. (1397). تحلیل آماری- دینامیکی تاشدگی‏های وردایست منطقة جنوب‏ غرب آسیا در سال‏های 2000 تا 2015، مجلة ژئوفیزیک ایران، 12(۲): 127-146.
چنگیزی، ه. (1394). بررسی اقلیمشناختی وردایست دینامیکی روی ایران، پایان‏نامة کارشناسی ارشد هواشناسی، دانشگاه تهران.
شریفی، م. و سام خانیانی، ع. (1390). استفاده از تکنیک GPS Radio Occultation در بررسی تغییرات اقلیمی، همایش ژئوماتیک 90، تهران: سازمان نقشه‏برداری کشور.
عساکره، ح.؛ قائمی، ه. و فتاحیان. م. (1394). اقلیم‏شناسی مرز شمالی پشتة پُرفشار جنب حاره بر روی ایران، نشریة پژوهشهای اقلیمشناسی، ۷(25-26).
علیجانی، ب. (1385). آبوهوای ایران، تهران: انتشارات پیام نور.
کاویانی، م.‏ر. و علیجانی، ب. (1380). مبانی آبوهواشناسی، تهران: سمت.
کریمی، م.؛ طباطبائیان، ع.؛ شفی، ح. و شکرالهی، م. (۱۳۸۴). بررسی و مطالعة نوسانات ازن کلی جو با تغییرات تروپوپاز (وردایست) بر فراز شهر اصفهان، دوازدهمین کنفرانس ژئوفیزیک، تهران: سازمان زمین‏شناسی.
کیخسروی، ق. (1394). تحلیل همدیدی‏- آماری تغییرات ارتفاع لایة تروپوپاوز به‏عنوان نمایه‏ای از تغییر اقلیم در خراسان رضوی، آبوهواشناسی کاربردی، 2(۲): 33-48.
لشکری، ح.؛ داداشی رودباری، ع. و محمدی، ز. (1396). تحلیل تغییرات ماهانۀ ارتفاع لایۀ تروپوپاوز بر روی ایران، پژوهش‏های جغرافیای طبیعی، 49(1): 113-133.
مسعودیان، س.ا. (1390). آبوهوای ایران، انتشارات شریعة توس.
مسعودیان، س.ا.؛ کیخسروی کیانی، م.ص. و رعیت‏پیشه، ف. (1393). معرفی و مقایسة پایگاه دادة اسفزاری با پایگاه‏های دادةGPCC ، GPCP، وCMAP ، تحقیقات جغرافیایی، 29(۱): 73-84.
عساکره، ح. (1390). مبانی اقلیم­شناسی آماری، انتشارات دانشگاه زنجان.
Alijani, B. (2006). Climate of Iran, Tehran: Payame Noor University Publications.
Asakereh, H.; Ghaemi, H. and Fattahian, M. (2016). Climatology Northern boundary of subtropical high pressure ridge on Iran, Journal of Climate Research, 1395(25): 21-32.
Beekmann, M.; Ancellet, G.; Blonsky, S.; De Muer, D.; Ebel, A.; Elbern, H.; ... and Smit, H.G.J. (1997). Regional and global tropopause fold occurrence and related ozone flux across the tropopause, Journal of Atmospheric Chemistry, 28(1-3): 29-44.
Bethan, S.; Vaughan, G. and Reid, S.J. (1996). A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere, Quarterly Journal of the Royal Meteorological Society, 122(532): 929-944.
Borhani, R. and Ahmadi-Givi, F. (2018). A statistical-dynamical analysis of tropopause folds in the southwest Asia during 2000-2015, Iranian Journal of Geophysics, 12(2): 127-146.
Borhani, R.; Ahmadi-Givi, F.; Ghader, S. and Mohebalhojeh, A. (2018). Study of tropopause folding frequency and its seasonal changes during 2013-2015 emphasizing over Southwest Asia, Journal of the Earth and Space Physics, 44(3): 607-624. doi: 10.22059/jesphys.2018.234992.1006909.
Changizi, H. (2015). A Study of the Climatic of Dynamic Tropopause on Iran, Master Thesis in Meteorology, University of Tehran.
Chapman, S. (1950). Upper atmospheric nomenclature, Bulletin of the American Meteorological Society, 31(8): 288-290.
Danielsen, E.F. (1968). Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, Journal of the Atmospheric Sciences, 25(3): 502-518.
Emanuel, K.; Solomon, S.; Folini, D.; Davis, S. and Cagnazzo, C. (2013). Influence of tropical tropopause layer cooling on Atlantic hurricane activity, Journal of Climate, 26(7): 2288-2301.
Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.; Hegglin, M.I. and Birner, T. (2011). The extratropical upper troposphere and lower stratosphere, Reviews of Geophysics, 49(3).
Gold, E. (1909). The isothermal layer of the atmosphere and atmospheric radiation, Proc. R. SOC. London, Ser. A., 82: 43-70.
Hoerling, M.P.; Schaack, T.K. and Lenzen, A.J. (1991). Global objective tropopause analysis, Monthly Weather Review, 119(8): 1816-1831.
Hoinka, K.P. (1998). Statistics of the global tropopause pressure, Monthly Weather Review, 126(12): 3303-3325.
Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B. and Pfister, L. (1995). Stratosphere‐troposphere exchange, Reviews of geophysics, 33(4): 403-439.
Hu, D.; Tian, W.; Guan, Z.; Guo, Y. and Dhomse, S. (2016). Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened Walker circulation, Journal of Climate, 29(21): 7755-7771.
Karimi, M.; Tabatabayan, A.; Shafi, H. and Shokrallahi, M. (2005). Investigation of ozone fluctuations with tropopause changes (Verdeist) over Isfahan, 12th Conference Geophysics, Tehran: Geology organization.
Kavyani, M.R. and Alijani, B. (2001). The Foundations of climatology, Tehran: Samat Publications.
Keikhosravi, G. (2015). Synoptic analysis - statistical height of the tropopause layer as a profile of climate change in Khorasan Razavi, Journal of Applied Climatology, 2(2): 33-48.
Klemp, J.B. and Lilly, D.R. (1975). The dynamics of wave-induced downslope winds, Journal of the Atmospheric Sciences, 32(2): 320-339.
Kunz, A.; Konopka, P.; Müller, R. and Pan, L.L. (2011). Dynamical tropopause based on isentropic potential vorticity gradients, Journal of Geophysical Research: Atmospheres, 116(D1).
Lashkari, H.; Dadashi Roudbari, A. and Mohamadi, Z. (2017). Analysis of Monthly Changes in Tropopause Height Layer on Iran, Physical Geography Research Quarterly, 49(1): 113-133.
Masoodian, S.A. (2011). Climate of Iran, First Edition, Sharia Tops Publications.
Masoodian, S.A.; Keikhosravi Kiany, M.S. and Rayat Pishe, F. (2014). Introduction and a comparison among gridded precipatation database of asfazari with GPCC, GPCP and CMAP, Geograohical Resarch, 29(1): 73-87.
Mohanakumar, K. (2008). Stratosphere troposphere interactions: an introduction, Springer Science & Business Media.
Prather, M.J.; Zhu, X.; Tang, Q.; Hsu, J. and Neu, J.L. (2011). An atmospheric chemist in search of the tropopause, Journal of Geophysical Research: Atmospheres, 116(D4).
Randel, W.J. and Jensen, E.J. (2013). Physical processes in the tropical tropopause layer and their roles in a changing climate, Nature Geoscience, 6(3): 169.
Reichler, T., Dameris, M., & Sausen, R. (2003). Determining the tropopause height from gridded data. Geophysical research letters30(20).
Rimbu, N.; Stefan, S.; Busuioc, A. and Georgescu, F. (2016). Links between blocking circulation and precipitation extremes over Romania in summer, International Journal of Climatology, 36(1): 369-376.
Scherhag, R. (1948). Neue Methoden der Wetteranalyse, Wetterprognose, Berlin, 97-106.
Schneider, T. (2004). The tropopause and the thermal stratification in the extratropics of a dry atmosphere, Journal of the atmospheric sciences, 61(12): 1317-1340.
Sharifi, M. and Sam Khaniani, A. (2011). Using GPS Radio Occultation Technique in Investigating Climate Change, Geomatics Conference 90, Tehran: Country Mapping Organization.
Siler, N. and Durran, D. (2015). Assessing the impact of the tropopause on mountain waves and orographic precipitation using linear theory and numerical simulations, Journal of the Atmospheric Sciences, 72(2): 803-820.
Škerlak, B.; Sprenger, M.; Pfahl, S.; Tyrlis, E. and Wernli, H. (2015). Tropopause folds in ERA‐Interim: Global climatology and relation to extreme weather events, Journal of Geophysical Research: Atmospheres, 120(10): 4860-4877.
Steinbrecht, W.; Claude, H.; Köhler, U. and Hoinka, K.P. (1998). Correlations between tropopause height and total ozone: Implications for long‐term changes, Journal of Geophysical Research: Atmospheres, 103(D15): 19183-19192.
Tang, Q. and Prather, M.J. (2010). Correlating tropospheric column ozone with tropopause folds: the Aura-OMI satellite data, Atmospheric Chemistry and Physics, 10(19): 9681-9688.
Varotsos, C.; Cartalis, C.; Vlamakis, A.; Tzanis, C. and Keramitsoglou, I. (2004). The long-term coupling between column ozone and tropopause properties, Journal of Climate, 17(19): 3843-3854.
Varotsos, P.; Bogris, N.G. and Kyritsis, A. (1992). Comments on the depolarization currents stimulated by variations of temperature or pressure, Journal of Physics and Chemistry of Solids, 53(8): 1007-1011.
Wang, S.; Camargo, S.J.; Sobel, A.H. and Polvani, L.M. (2014). Impact of the tropopause temperature on the intensity of tropical cyclones: An idealized study using a mesoscale model, Journal of the Atmospheric Sciences, 71(11): 4333-4348.
Pan, L. L., Randel, W. J., Gary, B. L., Mahoney, M. J., & Hintsa, E. J. (2004). Definitions and sharpness of the extratropical tropopause: A trace gas perspective. Journal of Geophysical Research: Atmospheres109(D23).
Santer, B. D., Sausen, R., Wigley, T. M. L., Boyle, J. S., AchutaRao, K., Doutriaux, C., ... & Schmidt, G. (2003). Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. Journal of Geophysical Research: Atmospheres108(D1), ACL-1.