Assessment of active tectonics of the Karrand River Basin using drainage network feature analysis

Document Type : Full length article

Author

Department of Geography, Payame Noor University

Abstract

Introduction :
Tectonics in geology is the causative factor of buildings and the relationship between the geometrical form of the building and the effective forces (Purkerman & Sedig; 2003, 38).Active tectonics also reflects the tectonic movements of the youngest period, the Quaternary, and in particular the Holocene and the present (Soleimani 1,1377 ). The Zagros Zone is tectonically active, and the Arabian-Orsian plate convergence in the northwest Zagros is a combination of shortening and strike-slip strike-slip movements (Blank et al., 2003,401). (2006) estimates shortening of the northwestern Zagros to a maximum of 5 mm per year, and Mirzaei (1997) estimates that more than 50% of the recorded earthquakes in Iran occur in the Zagros Zone and is the most seismic-prone area in Iran.Shabani (2004) has identified the Kandand fault as an earthquake source in Kermanshah province.The west of the Kerend Basin is in the folded Zagros Zone and the kerend seismic fault is located in this basin. Therefore, it seems that tectonics of the region is active and considering the location of the city of kerend West and many villages and human settlements in the basin, evaluation and estimation of its active tectonics is necessary. The purpose of this study was to evaluate and estimate the active tectonics of the Kerend West basin using drainage network analysis.
Materials and Methods :
This research is based on descriptive-analytical, library, field, statistical, and geomorphic and morphometric indices. Research data include ten-meter DEM, 1: 100,000 geological map, and 1: 50,000 kerend topographic map, IRS satellite imagery, and Google Inheritance imagery.Also during field surveys and surveys of satellite and Google Earth imagery geomorphic evidence of active tectonics in the basin was identified.Then, using DEM of 10 m area, the area of the west of the Kerend basin and its drainage network were extracted and ranked using the Straler Waterway method.In this study, anomalies and morphometric indices were calculated, followed by morphometric indices of ga, R, Rb and Rbd and geomorphic indices of Af, T, Bs, SL and S (Table 1).The results of the geomorphic and morphometric indices are then compared with the geomorphic evidence and Based on the analysis of drainage network conditions and geological conditions, the active tectonic status in the west of Kandand basin is determined.
Findings:
waterway of 1 rank have the highest rate of anomalies in the kerend West basin and the number of Hat hierarchical anomalies in this basin is 730 waterways.This illustrates the impact of tectonic activity on the drainage network of the kerend Basin.The values of a and ga indices also indicate anomalies in the drainage network and tectonic activity of the studied basin. The values of Rbd and R parameters also indicate the hierarchical anomalies and the impact of the drainage network on the kerend Basin from tectonic activity. The index value (Af) in the west kerend basin indicates active and tectonics uplifit on the left of the kerend River, That is the direction of the northwest-southeast river. The left fringe of the river is due to the uplift of the kerend anticline by the Zagros shortening and thekerend thrust movement in its southern flank.The index (T) of the west kerend basin reflects the topographic asymmetry of the basin.And indicates active tectonic interference and elevation of the left bank of the river.Indices (Bs) of the kerend Basin indicate that the uplift of the tectonically-induced mountain fronts is more active than the erosional processes and has stretched the form of the West kerend Basin.Indicator (S) of the kerend River indicates that the river is not in equilibrium due to active tectonics and is relatively straight.The index (SL) of the west of the kerend River reflects drastic changes in the river's longitudinal profile due to active tectonics.The large number of low-ranking waterways in the Kandrab West basin as a geomorphic evidence confirms the existence of anomalies in the drainage and tectonic network active in the basin and confirms the results of morphometric indices.The asymmetry of the watershed, the west of the river, and the drainage network and the longer length of the watercourses on the left of the river indicate the geomorphological evidence confirming the values of the AF and T indices.
Result :
The anomalies of the drainage network of the Kerend West Basin were evaluated by morphometric indices and their results indicate the existence of hierarchical anomalies in the drainage network of the Kandrab Basin under the influence of active tectonics.Rank 1 channel anomalies are in addition to the hierarchical anomaly indices and its density in the branching indices.The results of geomorphic indices also indicate uplift of the left bank of the main river due to westward thrust movement of the mainland and this causes drifting of the basin and asymmetry of drainage network in the west coast of the east.Also formed and longitudinal profile and river bed anomalies indicate active tectonics of this basin.The results of geomorphic indices indicate active tectonics of the west of the Kerend basin.The results of morphometric indices, geomorphic indices and evidence of active tectonic geomorphology in the kerend West Basin confirm each other and indicate the active tectonics of the Kerend West Basin.Based on the results of this study, it can be concluded that tectonic activity in the west of the kerend basin is a general uplift of the basin as well as uplift of the left bank of the river due to the kerend active fault movement.This is consistent with the results of studies by Blank et al. (2003), Bachmanov (2003), and Hesami et al. (2006), who believe in the uplift of the northwestern Zagros. The tectonic activity of the kerend West basin as well as the entire northwest Zagros range can cause active tectonic hazards such as earthquakes.


The anomalies of the drainage network of the Kerend West Basin were evaluated by morphometric indices and their results indicate the existence of hierarchical anomalies in the drainage network of the Kandrab Basin under the influence of active tectonics.Rank 1 channel anomalies are in addition to the hierarchical anomaly indices and its density in the branching indices.The results of geomorphic indices also indicate uplift of the left bank of the main river due to westward thrust movement of the mainland and this causes drifting of the basin and asymmetry of drainage network in the west coast of the east.Also formed and longitudinal profile and river bed anomalies indicate active tectonics of this basin.The results of geomorphic indices indicate active tectonics of the west of the Kerend basin.The results of morphometric indices, geomorphic indices and evidence of active tectonic geomorphology in the kerend West Basin confirm each other and indicate the active tectonics of the Kerend West Basin.Based on the results of this study, it can be concluded that tectonic activity in the west of the kerend basin is a general uplift of the basin as well as uplift of the left bank of the river due to the kerend active fault movement.This is consistent with the results of studies by Blank et al. (2003), Bachmanov (2003), and Hesami et al. (2006), who believe in the uplift of the northwestern Zagros. The tectonic activity of the kerend West basin as well as the entire northwest Zagros range can

Keywords


بهرامی، ش.؛ اکبری، ا. و معتمدی ‏راد، ال. (1393). تحلیل ژئومتری حوضه‏های زهکشی با استفاده از شواهد ژئومورفولوژی تکتونیک (مطالعة موردی: چهار حوضة زهکشی صدخرو، کلاته سادات، فاروب رومان، و گلیان)، مجلة فضای جغرافیایی، ش 48.
بهرامی، ش.؛ تقوی‏مقدم، ا. و زنگنه ‏اسدی، م. ع. (1396). کارایی شاخص‏های ژئومورفومتری شبکة زهکشی جهت ارزیابی تکتونیک فعال در حوضه‏های باغرود، بوژان، زاوین، و سررود در شمال شرق کشور، مجلة آمایش جغرافیا فضا، ش 25.
بهرامی، ش.؛ مقصودی، م. و بهرامی، ک. (1393). بررسی نقش تکتونیک در ناهنجاری مورفومتری شبکة زهکشی در چهار حوضة آبخیز در زاگرس، مجلة پژوهش‏های جغرافیایی طبیعی، ش 76.
بهرامی، ش.؛ اکبری، ا. و معتمدی‏ راد، م. (1393). تحلیل ژئومتری حوضه‏های زهکشی با استفاده از شواهد ژئومورفولوژی تکتونیک (مطالعة موردی: چهار حوضة زهکشی صدخرو، کلاته سادات، فاروب رومان و گلیان)، مجلة فضای جغرافیایی، 14(48).
پورکرمانی، م. و صدیق، ح. (1382). پدیده‏های ژئومورفولوژیکی حاصل از گسل تبریز، مجلة جغرافیا و توسعه، 2: 37-44.
رجایی، ع. و کرمی، ف. (1383). نقش زمین‏ساخت در تحول زمین‏ریخت‏شناسی پایکوهای شمالی کوه بزقوش، مجلة علوم زمین، 23: ۵۱-5۲.
سلیمانی، ش. (1377). رهنمودهایی در شناسایی حرکات تکتونیکی فعال و جوان «با نگرشی بر مقدمات دیرینه‏شناسی، تهران: انتشارات مؤسسة بین‏المللی زلزله‏شناسی و مهندسی زلزله.
شعبانی، ا. (1383). برآورد خطر زمین‏لرزة گسترة کرمانشاه- سنندج به روش احتمالی، پایان‏نامة کارشناسی ارشد دانشگاه تهران.
کرمی، ف.؛ خطیبی، م. و اباذری، ک. (1397). تحلیل ناهنجاری‏های شبکة زهکشی و ارتباط آن با تکتونیک فعال در حوضه‏های آبریز شمال تبریز، مجلة ژئومورفولوژی کمی، ش 1، شمارة پیاپی 25.
مقصودی، م.؛ جعفری اقدم، م. و باقری سیدشکری، س. (1391). تحلیل عوامل مؤثر در آنومالی شبکة زهکشی تاقدیس نسار (زاگرس شمال‏غربی)، فصل‏نامة تحقیقات جغرافیایی، 104: 106-131.
مقصودی، م.؛ جعفری، م.؛ باقری سیدشکری، س. و مینایی، س. (1390). بررسی تکتونیک فعال حوضة آبخیز کفرآور با استفاده از شاخص‏های ژئومورفیک و شواهد ژئومورفولوژیکی، فصل‏نامة توسعة جغرافیا، ش 25.
مهندسین مشاور سنجش از دور (1377). گزارش زمین‏شناسی حوضة الوند، ج ۱، سازمان آب منطقه‏ای کرمانشاه.
نگهبان، م. و خطیب، م. م. (1384). بررسی تکتونیک فعال به روش تراکم‏سنجی آبراهه‏ها در اطراف گسل نصرت‏آباد (خاور ایران)، بیست‏ودومین همایش زمین شناسی کشور.
یمانی، م.؛ باقری سیدشکری، س. و جعفری اقدم، م. (1389). تأثیر نوزمین‏ساخت در مورفولوژی آبراهه‏های حوضة آبریز چله (زاگرس غربی)، مجلة محیط جغرافیایی، 1: ۶۷-82.
یمانی، م.؛ کامرانی دلیر، ح. و باقری سیدشکری، س. (1389). مورفومتری و ارزیابی شاخص‏های ژئومورفیکی جهت تعیین میزان فعالیت نوزمین‏ساخت در حوضة آبریز چله (زاگرس شمال‏ غربی)، فصل‏نامة تحقیقات جغرافیایی، شمارة پیاپی 79.
Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26(4): 169-175.‏
Al Hamdouni, R.El.; Iriggaray, C.; Fernandez, T.; Chacon, J. and Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (Southern Spain). Geomorphology. 96: 150-173.
Bachmanov, D.M.; Trifonov, Kh.T.; Hessami, A.; Uozhurin, I.; Ivanovo, T.P.; Rogozhin, E.A.; Hademi, M.C. and Tamali, F.H. (2003). Active faults in the Zagros and central Iran, Tectonophysics, 380: 221-241.
Bahrami, Sh. (2012). Morphotectonic evolution of triangular facets and wine-glass valleys in the Noakoh anticline, Zagros, Iran: Implications for active tectonics. Geomorphology, 159: 37-49.‏
Bahrami, Sh. (2013). Analyzing the drainage system anomaly of Zagros basins: implications for Tectonophysics journal, Vol. 608, Elsevier.
Biswas, S. S. (2016). Analysis of GIS based morphometric parameters and hydrological changes in Parbati River Basin, Himachal Pradesh, India. Journal of Geography & Natural Disasters, 6(2): 1-8.
Blance, E.; Allen, M.; Inger, S. and Hassani, H. (2003). Structural styles in the Zagros simple folded zone Iran, Geological society, Vol. 160.
Burbank, D. W. and Anderson, R. S. (2001). Tectonic geomorphology. John Wiley & Sons.
Cannon, PJ. (1976). Generation of explicit parameters for a quantitativegeomorphic study of the Mill Creek drainage basin. Okla GeolNotes, 36: 3-16.
Chich, C.; Shanchen, W.; Wu, L. and Lin, C. (2006). Active deformation Front delineated by drainage pattern analaysis and vertical movementrates, soathwestern costal plain Taiwan, Journal of Asian Earth Sciences.
Ciccacci, S.; Fredi, P.; Lupia Palmieri, E. and Pugliese, F. (1987). Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. In International geomorphology, 1986: proceedings of the First International Conference on Geomorphology/ed on behalf of the British Geomorphological Res Group by V. Gardiner and sectional ed, MG Anderson...[et al.]. Chichester: Wiley, c1987.
Guarnieri, P. and Pirrotta, C. (2008). The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology, 95(3-4): 260-273.
Guccione, M.J.; Mueller, K.; Champion, J.; Shepherd, S.; Carlson, S.D.; Odhiambo, B. and Tate, A. (2001). Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone. Geomorphology, 43: 313-349.
Hamdouni, R.El.; Iriggaray, C.; Fernandez, T.; Chacon, J. and Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (Southern Spain). Geomorphology. 96: 150-173.
Hessami, K., Nilforoushan, F., Talbot, C. J. (2006). Active deformation within the Zagros Mountains deduced GPS measurements, Geology society, 163: 143-148.
Hurtrez, J.E.; Sol, C. and Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (central Nepal). Earth Surf Process Landform.
Keller, E. A. and Pinter, N. (1996). Active tectonic: Earthqukes, Uplift. And Landscape. Prentice Hall, Pub.
Keller, E. A. and Pinter, N. (2002). Active Tectonics: Earthquakes uplift and Landscape second edition: Englewood Cliffs, New Jersey, Prentice Hall, p 362.
Li, Y.; Yang, J.; Tan, L. and Duan, F. (1999). Impact of tectonics on alluvial landforms in Hexi corridor, Northwest China. Geomorphology, Vol. 28.
Malik, J. and Mahanty, C. (2006). Active tectectonic influence on the evolution of drainage and Landsca pe: Geomorphic signatares From Fronal and hinterl and areas along the Nortwesteren Himalaya, Indi. Journal fasin.
Malik, J. N. and Mohanty, C. (2007). Active tectonic influence on the evolution of drainage and landscape: geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India. Journal of Asian Earth Sciences, 29(5-6): 604-618.
Miller, V. C. (1953). A quantitative geomorphologic study of drainage basin characteristic in the Clinch Mountain area, Virginia and Tennessee. Project.
Mirzaei, N. (1997). Seismic zoning of Iran, dissertation for Ph.d degree in Geophysics ,Institute of Geophysics, state semi logical Bureau, Beijne, people Republic of china, 134pp.
Pedrera, A.; Pérez-Peña, J. V.; Galindo-Zaldívar, J.; Azañón, J. M. and Azor, A. (2009). Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology, 105(3-4): 218-231.
Raj, R. (2012). Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin. Journal of Asian Earth Sciences, 50: 66-78.
Randel, T. C. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify area of possible quaternary tilt-block tectonics: an example from th Mississippi Embayment. Geological Society, 106: 571-581.
Ribolin, A. and Spagnolo, M. (2007). Drainage network geometry versus tectonics in the Argentera Massif (French-Italian Alps). Geomorphology, pp. 1-14.
Schumm, S. (1956). Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646.
Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39.‏
Tiwari, V. M.; Srinivas, N. and Singh, B. (2014). Hydrological changes and vertical crustal deformation in south India: Inference from GRACE, GPS and absolute gravity data. Physics of the Earth and Planetary Interiors, 231: 74-80.
Vijith, H.; Prasannakumar, V.; Sharath Mohan, M. A.; Ninu Krishnan, M. V. and Pratheesh, P. (2017). River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain (SIGT). Physical Geography, 38(4): 360-378.‏
Zhang, H. Y.; Shi, Z. H.; Fang, N. F. and Guo, M. H. (2015). Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234: 19-27.‏
Volume 52, Issue 3
October 2020
Pages 499-514
  • Receive Date: 15 March 2020
  • Revise Date: 04 July 2020
  • Accept Date: 04 July 2020
  • First Publish Date: 22 September 2020