A Discrimination of Roles of Internal and External Factors on the Decadal Variation of Annual Precipitation in Iran over Recent Four Decades (1975-2016)

Document Type : Full length article

Authors

1 Professor in Climatology , Department of Geography, University of Zanjan

2 Department of Geography, Geography Department, University of Isfahan, Isfahan, Iran

3 Geography Department, University of Zanjan, Zanjan, Iran

Abstract

A Discrimination of Roles of Internal and External Factors on the Decadal Variation of Annual Precipitation in Iran over Recent Four Decades (1975-2016)
Introduction
According to Intergovernmental Panel on Climate Change (IPCC) the Earth's climate has been changed during recent century (IPCC, 2007). These changes may continues for the next century. The changes have happened in two ways, log- term change (trend) and variation (in form of Oscillations, phases, shifts, and persistence) (Asakereh,2017). Moreover, some of these changes are due to internal factors of a region, whilst some of them result from external culprits of a given region. The distinguish between these two groups of factors is an important scientific effort to understand the changes mechanisms governing them.
The emerge of climate changes and climate variation can be traced by investigation of some sensitive climate elements. One of those chaotic elements is precipitation which experiences changes in different tempo-spatial scales (Goudi, 1994). Most of these changes, specially the trends, are studied in global (Todorov, 1985; Vining and Griffiths, 1985; Diaz et al. 1989) and national (Askari and Rahimzadeh, 2003; Asakereh,2004; Zahedi et al., 2007; Katiraie , 2007; Mohamadi, 2012; Ekhtesasi et al. 2015; Nazeri Tahrudi, 2016) scals.
In the climatology literature (Singh et al. 1995; Ghayur and Masoodian, 1996; Glazirin, 1997; Mojarrad and Moradifar, 2003; Asakereh, 2004; Raziei and Azizi, 2009; Asakereh and Seifipour, 2013) spatial changes of precipitation was attributed to spatial coordination (longitude and latitude) and topographic features (elevation, slope magnitude and aspect). The temporal changes in precipitation in association with these topo-spatial factors has not been considered in details and in proper ways in climate researches.
In current study we put the spotlight on the decadal variation in relation with the topo-spatial features as a representative of climate change and as a vital context of research. Accordingly, a regression model is adopted so as quantify the effects of topo - spatial factors effecting variability of precipitation over recent four decades.
Materials and methods
In order to achieve the aim of current study, two dataset were adopted; a national precipitation dataset, Esfezari, and Digital Elevation Model (DEM):
The third version of Esfezari dataset is result from Kriging interpolation of daily record of 2188 synoptic, climatologic, and rain gauge stations for 46 years (1970-2016) with 10 km resolution. The 16801 daily maps with 167×205 pixels were created accordingly. Consequently, the dataset include dimensions of 167×205×16801.
The DEM data with 10 meters spatial resolution was adopted from The U.S. Geological Survey which was provided by "Astet" satellite images. This dataset was applied to extract the topographic features (elevation, slope and its aspect) for Iran.
To start with, the annual precipitation for the entire under investigation period (1970-2016) was analyzed according to abovementioned data. In the second place, the topo-spatial distribution of precipitation for four decades ended up to 2007-2016 was compared in an analyzing effort by using linear and non-linear correlation. In this stage, according to Law of Parsimony, it is revealed that linear correlation illustrate the relation between precipitation and topo - spatial factors in proper way. Moreover, A multivariate linear regression fitted on the five topo-spatial elements for every under study decade so as to detect precipitation accordingly. The regression model can be expressed as follow:

where refers to annual precipitation in th pixel which is detected by the topo - spatial factors and considered the internal- cause precipitation. and are latitude and longitude, respectively. In the above regression model, , and are elevation, slop, and aspect of slop, respectively. Consequently, the external - cause precipitation is the model residual. Finally, the descriptive characteristics of precipitation maps of internal-cause and external - cause were analyzed.
Results and discussion
General Features of Iran Precipitation
The general feature of precipitation over Iran shows a decreasing trends from west to east and from north to south. The coast of Caspian Sea and the summits of Zagros Mountain chain receive the highest values of precipitation. The spatial average of annual precipitation is about 250.5 mm. The strongest relationship between precipitation and topo-spatial factors is related to longitude in negative way. This feature is reflected in eastward decreasing of precipitation. The determine coefficients for latitude and elevation are 13% and 4.5%, respectively.
The variation of effects of internal and external factors
In spite of the stability of the determine coefficients of all regression models for all decades, some of topo - spatial factors have noticeable variation. This feature refers to the fact that increasing in the effect of one factor may decrease the effect of other one(s). The models, however, illustrate a stable feature for precipitation over all four under study area during four decades. Consequently, the external factors are the main culprits in decadal changes of annual precipitation. Our finding showed that in the first decade the ratio of factors was 52.38% which increased gradually to 54.08% , 58.44%, and 59.72% among of four under the rest decades (Table 1). This refer to the fact that the changes in variation of precipitation is in association of global changes.
Table 1: The areas under the effects of variation due to internal and external factors (%)
Priod The percent of the country due to ---effects
internal external
First decade 47.62 52.38
Second decade 45.92 54.08
Third decade 41.56 58.44
Forth decade 40.28 59.72
Entire period 44.38 55.62


Conclusion
The climate and precipitation climatology of Iran is effected by internal and external factors, due to geographic features of the country. The internal factors include spatial (latitude and longitude), and topographic (elevation, slop and its aspect) features. In current study, in order to discriminate internal and external characteristics which effects precipitation variation we fitted a multivariate linear regression on internal factors to separate them out and distinct external factors. Accordingly, our finding revealed that the ratio of external factors in variability of precipitation increased from the first decade (52.38%) to the last decade (59.72%). This result is in line with previous studies (Khodadi et al. 2013; Farajzadeh and Ahmadian, 2014; Darand, 2015; Karimi et al., 2018). The most influenced area from the variations of external factors are internal parts rather than marginal parts of the country.
Keywords: Iran, Precipitation, Climate Change, Decadal Variation, Precipitation Variability

Keywords

Main Subjects


اختصاصی، م. ر.؛ جهان‏بخشی ف. و کوثری، م. ر. (1394). بررسی روند بارش در 32 ایستگاه سینوپتیک ایران با روش ناپارامتری و جمع متحرک داده با مرتبة 1 تا 48 ماهه طی سال‏های 1970 تا 2005، تحقیقات منابع آب ایران، 11(۲): ۱۵۱- 156.
خدادادی، م. م.؛ آزادی، م. و رضازاده، پ. (1392). منابع رطوبت و ترابرد ماهانة آن روی ایران و برهم‏کنش آن با مونسون هندوستان و پُرارتفاع جنب حاره، مجلة ژئوفیزیک ایران، 7(2): ۹۶-113.
دارند، م. (1394). واکاوی وردایی زمانی- مکانی رطوبت جوی ایران‏زمین طی بازۀ زمانی ۱۰۷۰-2013، پژوهش‏های جغرافیای طبیعی، 47: ۲۱۳-239.
رضئیی، ط. و عزیزی، ق. (1387). بررسی توزیع مکانی بارندگی فصلی و سالانه در غرب ایران، پژوهش‏های جغرافیایی، 65: 18- 93.
زاهدی، م.؛ ساری‏صراف، ب. و جامعی ج. (1385). الگوسازی بارش ایستگاه‏های ارومیه و تبریز، مجلة جغرافیا و توسعة ناحیه‏ای، 7: 1-15.
عساکره، ح. (1383). مدل‏‏سازی تغییرات مکانی عناصر اقلیمی مطالعة موردی: بارش سالانة استان اصفهان، فصل‏نامة تحقیقات جغرافیایی، 19(۳): ۲۱۳-231.
عساکره، ح. (1386). تغییرات زمانی و مکانی بارش ایرانطی دهه‏های اخیر، جغرافیا و توسعه، 10: 145-164.
عساکره، ح. (1387). کاربرد روش کریجینگ در میان‏یابی بارش مطالعة موردی: میان‏یابی بارش 26/12/1376 در ایران‏زمین، جغرافیا و توسعه، 12: ۲۵-42.
عساکره، ح. (1390). مبانی اقلیم‏شناسی آماری، زنجان، انتشارات دانشگاه زنجان.
عساکره، ح. و سیفی‏پور، ز. (1391). مدل‏سازی مکانی بارش سالانۀ ایران، جغرافیا و توسعه، 10(29): 15-30.
عساکره، ح. (1396). مبانی پژوهش در آب‏وهواشناسی، زنجان: انتشارات دانشگاه زنجان.
عسگری، ا. و رحیم‏زاده، ف. (1382). برجستگی نوسان بارش در کشور نسبت به روند و جهش آن، سومین کنفراس منطقه‏ای و اولین کنفراس ملی تغییر اقلیم اصفهان.
علیجانی، ب. (1373). نقش کوه‏های البرز در تنوع مکانی بارش، مجلة دانشکدة ادبیات و علوم انسانی دانشگاه تربیت معلم، 4 و 5: ۹۹- 120.
علیجانی، ب. (1395). آب و هوای ایران، چ ۱۳، تهران: انتشارات دانشگاه پیام نور.
غیور، ح.ع. و مسعودیان، س. ا. (1375). بررسی نظام تغییرات مجموع بارش سالانه در ایران‏زمین، نشریة نیوار، 29: ۲۷-60.
فرج زاده،  م و احمدیان، ک. (1393).  تحلیل زمانی و مکانی خشکسالی با استفاده از شاخص SPI در ایران، مخاطرات محیط طبیعی، 4: 16-1.
کتیرایی، پ. س.؛ حجام، س. و ایران‏نژاد، پ. (1386). سهم تغییرات فراوانی و شدت بارش روزانه در روند بارش در ایران طی دورة 1960 تا 2001، مجلة فیزیک زمین و فضا، 33: 67-83.
کرلینجر، پ. (1384). رگرسیون چندمتغیری در پژوهش رفتاری، ترجمة حسن سرایی، تهران: سمت.
کریمی، م.؛ کاکی، س.ا. و رفعتی، س. (1397). شرایط و مخاطرات اقلیمی آیندة ایران در تحقیقات اقلیمی، نشریة تحلیل فضایی مخاطرات محیطی، ۵۰(۳): 1-22.
مجرد، ف. و مرادی‏فر ح. (1382). مدل‏سازی رابطۀ بارش با ارتفاع در منطقة زاگرس، فصل‏نامة مدرس، 2: 163-182.
محمدی، ب. (1390). تحلیل روند بارش سالانة ایران، جغرافیا و برنامه‏ریزی محیطی، 22(۴۳): ۹۵-106.
مسعودیان، س. ا. (1390). آب‏وهوای ایران، مشهد: انتشارات شریعة توس.
مسعودیان، س. ا. (1383). روند بارش در نیم سدة گذشته، جغرافیا و توسعة ناحیه‏ای، 2: 47-68.
مسعودیان، س. ا. (1398). گزارش بارش‏های اسفند 1397 و فروردین 1398 حوضه‏های سیل‏زدة ایران، هیئت ویژة گزارش ملی سیلاب، کارگروه اقلیم‏شناسی و هواشناسی، منتشر نشده.
مسعودیان، س. ا.؛ رعیت‏پیشه، ف. و کیخسروی‏ کیانی، م. ص. (1393). معرفی و مقایسة پایگاه دادۀ بارشی TRMM3B43 و پایگاه دادۀ بارش اسفزاری، مجلة ژئوفیزیک ایران، 4: ۱۵-31.
ناظری تهرودی م؛ خلیلی، ک و احمدی ف. (1395). تحلیل روند تغییرات ایستگاهی و منطقه‌ای بارش نیم قرن اخیر کشور ایران. نشریه آب و خاک (علوم و صنایع کشاورزی)، 30: 654-643.
Alijani, B. (1994). The role of the Alborz mountains range in altitudinal distribution of Precipitation, Journal of the Faculty of Literature and Humanities Tarbiat Moallem University, 4 and 5: 99-120.
Alijani, B. (2016). Climate of Iran, Thirteenth Edition, Payam Noor University Press, Tehran.
Asakereh, H. (2004). Spatial change modeling of climate data A case study: Annual precipitation of Esfahan province, Geographical Research, 19(374): 213-231.
Asakereh, H. (2007). Spatio – Temporal Changes of Iran Inland Precipitation during Recent Decades, Geography And Development Iranian Journal, 10: 145-164.
Asakereh, H. (2008). Kriging Application in Climatic Element Interpolation A Case Study: Iran Precipitation in 1996.12.16, Geography And Development Iranian Journal, 12: 25-42.
Asakereh, H. (2011). Fundamentals of Statistical Climatology, University of Zanjan Press, Zanjan.
Asakereh, H. and Seifipour, Z. (2013). Spatial Modeling of Annual Precipitation in Iran, Geography and Development, 10(29): 6-9.
Asakereh, H. (2017). Fundamentals of Research in Climatology, University of Zanjan Press, Zanjan.
Asakereh, H. and Sayadi, F. (2014). Evaluation the Ability of Markov Chain Model to Estimating and Regionalizing the Probability of Dry Days in Iran, Geography And Environmental Hazards, 10: 37-54.
Askari, A. and Rahimzadeh, F. (2003). Prominence of precipitation fluctuations in the country relative to the trend and its mutation, Third Regional Climate Change Conference, Isfahan.
Darand, M. (2015). Analysis of Spatio-Temporal Variation of Atmospheric Humidity in Iran during 1979-2013. Physical Geography Researches, 47(2): 213-239
Diaz, H. F.; Bradley, R. S. and Eischeid, J. K. (1989). Precipitation fluctuations over global land areas since the late 1800's, Journal of Geophysical Research,  94: 1195-1210.
 Ekhtesasi, M.R.; Jahanbakhshi, F. and  Kousari, M.R. (2015). Evaluating the Trend of Precipitation in 32 Synoptic Stations in Iran with Nonparametric Method and Moving Summation of Data for the Period of 1970 to 2005 with Ranks of 1 to 48 Months. Iran-Water Resources Research, 11(2): 151-156.
Farajzadeh, M. and Ahmadian, K. (2014). Temporal and Spatial Analysis of Drought with use of SPI Index in Iran, Journal of Natural Environmental Hazards, 4: 1-16.
Ghayur, H.A. and Masoodian, S.A. (1996). Investigating the System of Changes in the Total Annual Precipitation in Iran, Nivar, 29: 27-60.
Glazirin, G. E. (1997). Precipitation Distribution with Altitude, Theoretical and applied climatology, 58: 141-145.
Goudi, A. (1992). Environmental change, Oxford University Press, 3 edition.
IPCC, 2007, Climate Change, Synthesis Report, Published by the Intergovernmental Panel on Climate Change.
Kadioglu, M. and Sen, Z. (1998). Power-law Relationship in Describing Temporal and Spatial Precipitation Pattern in Turkey, Theoretical and Applied Climatology, 59: 93-106.
Karimi, M.; Kaki, S. and Rafati, S. (2018). Iran's Future Climate Conditions and Hazard in Climate Research. Jsaeh, 5(3): 1-22.
Katiraie, P.S.; Hejam, S. and Irannejad, P. (2007). Contribution of frequency variation and Precipitation intensity of Trend rainfall during the period 1960 to 2001, Journal of the Earth and Space Physics, 1: 67-83.
Kaviani, M.R. and Asakereh, H. (2005). Statistical Study of Annual Precipitation Trend in Isfahan, Research Bulletin of Isfahan University (Humanities), 1: 143-162.
Kerlinger, P. (1982). Multiple Regression in Behavior research, Samt Publication, Tehran.
 Khodadi, M. M.;  Azadi, M. and  Rezazadeh, P. (2013). Moisture sources and transport over Iran and its interaction with Indian monsoon and subtropical high, Iranian Journal of Geophysics, 7(2): 96-113.
Marengo, J.; Liebmann, B.; Kousky, V.E.; Filizola, N. and Wainer, I. (2001). On the onset and end of the rainy season in the Brazilian Amazon Basin, Journal of Climate, 14: 833-852.
Masoodian, S.A. (2004). Temperature Trends in Iran During the Last Half Century, Geography and Development, 2: 47-68.
Masoodian, S.A. (2008). On Precipitation Mapping in Iran, Journal of Humanities, 30(2): 69-80
Masoodin, S.A. (2011). Climate of Iran, Sharia Toos Press, Mashhad.
Masoodian, S.A. (2019). Report of precipitation in March 2016 and April 2015 in flooded basins of Iran, Special Committee of National Flood Report, Climatology and Meteorology Working Group, Unpublished.
Masoodian, S.A.; Rayatpishe, F. and Keykhosravi Kiani, M.S. (2015). Introducing the TRMM and Asfezari precipitation database: A comparative study, Iranian Journal of Geophysics, 4: 15-31.
Mohammadi, B. (2012). Trend Analysis of annual rainfall over Iran, Geography and Environmental Planning, 3: 95-106.
Mojarrad, F. and Moradifar, H. (2003). Modelling the Relation of Precipitation with Elevation in the Zagros Region, Modarres Human Scienes, 2: 163-182.
 Nazeri Tahrudi,M; Khalili, K; and Ahmadi, F.; (2016). Spatial and Regional Analysis of Precipitation Trend over Iran in the Last Half of Century. Journal of Water and Soil 46: 643-654.Raziei, T. and Azizi, G. (2009). Investigation of Spatial Patterns of Seasonal and Annual Precipitation in Western Iran, Physical Geography Research Quarterly, 65: 18-93.
Singh, P.; Ramasastri, K. S. and Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayes, Nordic Hydrology, 26: 259-284.
Tegart, W. J.; Mc, G.; Sheldon, G. W. and Griffths, D. C. (eds.) (1990). Climate Change: The IPPC Scientific Assessment. Australian Government Publishing Service, Canberra.
Nazeri Tahrudi, M.; Khalili, K. and Ahmadi, F. (2016). Spatial and Regional Analysis of Precipitation Trend over Iran in the Last Half of Century. Journal of Water and Soil, 2: 643-654.
Todorov, A. V. (1985). Sahel: The changing rainfall regime and “normals” used for its assessment, J. Climate. Appl. Meteor., 24: 97-107.
Vining, K. C. and Griffth, J. F. (1985). Climatic variability at ten stations across the United States, J. Climate. Appl. Meteor., 24: 363-370.