The most important physical, chemical and mineralogical properties of atmospheric dust deposited on Yazd city (Central Iran)

Document Type : Full length article


1 Assistance Professor, Faculty of Agriculture and Natural Resource, Ardakan University

2 Department of Environment, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran


One of the most important phenomena in arid and semi-arid regions of the world is dust, which is one of the most important environmental issues in these areas. Low rainfall in these areas, have somewhat reduced water erosion, while the lack of vegetation and other factors contributing to soil erosion has provided the ground for the development of wind erosion and the occurrence of dust storms (Ali Sufi and Shahriari, 1399). The integration of these sources of atmospheric particle production with dust from the soil increases the amount of organic matter and heavy elements in the subsided dust in dry ecosystems (Jafari and Khademi, 2017). Rashki et al. (2013) showed that silica, calcium, aluminum, sodium, magnesium and iron oxide compounds are the most important oxide compounds and quartz, calcite, muscovite and plagioclase minerals are the most abundant minerals in Sistan dust particles. Ali Sufi and Shahriari (2020) examined some chemical properties and the amount of some nutrients along with dust in Sistan plain. Calcium and phosphorus were the most abundant nutrients in the region, with phosphorus and sodium being the highest and lowest enrichment ratios, respectively. Salahi and Behrozi (2020) in the Dezful region of Khuzestan province, Iran showed that among the soluble elements in dust, calcium, potassium, sodium and magnesium had the highest concentration and the tracing of the dust showed that the alluvial sediments of Tigris and Euphrates in Iraq has been the main source of dust in Dezful. Over the past few years, the city of Yazd has witnessed many severe dusts, and it is known that the discovery of the source and other characteristics of these particles has helped to better combat this phenomenon or reduce its effects and its amount. This is despite the fact that no community studies have been conducted on these features in the city of Yazd. Understanding how particles are distributed and their chemical dust and composition to determine the physical / chemical properties, resources and mechanisms of formation and behavior, as well as determining strategies to control it is useful and valuable. Therefore, this study was performed to study the chemical and physical properties of dust during different seasons and to determine the possible source of particles and dust.
Materials and methods
The present study was conducted in Yazd city, the most populous city and center of Yazd province with an area of 131600 Km2. In order to sample dust and surface soil, 30 sampling sites were randomly selected in the study area to provide adequate coverage throughout the area. For sampling of atmospheric dust, from Marble Dust Collector which is made of a plastic tray with several rows of marbles (at least 2 rows) with a tray diameter of 31.5 cm and a height of 5 cm and a diameter of 1.6 cm glass marbles were used. Sampling of atmospheric dust was carried out in four seasons of autumn and winter of 2018, spring and summer of 2019 in Yazd city at a height of three meters above the ground (roofs of one-story houses). Surface soil sampling was performed at a depth of 0 to 10 cm once during dust sampling and close to dust sampling points. The particle size distribution of dust samples was determined. Then there are some chemical and physical properties such as texture, pH, electrical conductivity, nitrate, bicarbonate, the concentration of P, S, Na, K, Mg and Cl were determined in dust and soil samples, as well as the enrichment ratio of nutrients in the dust. The mineralogy of dust particles was also determined by XRD analysis. The data obtained from the analysis of dust and surface soil samples were analyzed using SPSS 16 software. A comparison of the mean of the studied parameters and the significance of their differences was performed using Duncan's test at the level of 5%. Also, spatial distribution maps of the parameters studied in the study were plotted using the inverse distance weighting method (IDW) in Arc GIS 10.1 software.
Results and discussion
In all seasons, silt particles (2 to 50 µm) make up the largest percentage of dust particles. Sand particles (more than 50 µm) make up the largest part of the particles after silt, and clay particles (less than 2 µm) have the lowest frequency of dust in the study area. According to the results, the pH of dust samples has changed from 7.10 to 9.74 with an average of 7.83, which compared to the results of soil samples fewer were found in all seasons. However, the minimum amount of pH was found in winter. Many researchers attribute the decrease in pH in cold seasons to a decrease in temperature and an increase in heating devices and fossil fuels, which causes CO2 and SO2 emissions to be released into the environment, thereby reducing pH (Jafari and Khademi, 2017). The average salinity in dust samples is 4412.93, which is less than the average salinity of the soil samples (minimum, maximum and average salinity of the soil 1990, 18060 and 6852.94 µS/cm respectively) while HCO3 (with an average of 23729.47 mg / kg) and K (with an average of 18972.82 mg / kg) were found in dust samples higher than surface soil samples (with an average of 1239.39 and 16633.06 mg / kg, respectively). HCO3 has the highest amount in summer (2770 mg / kg) and the lowest in spring (1720 mg / kg). NO3 has maximum (4017 mg / kg) and minimum (10.5 mg / kg), respectively, in spring and autumn. Except for the autumn season, nitrate in all seasons of sampling was higher than the amount in surface soil (231.27 mg / kg).The results showed that the salinity of the soil with anions and cations of nitrate, chlorine, potassium and sodium was significant at the level of 1%. However, there was no significant relationship between salinity of dust solution and bicarbonate, phosphorus and magnesium. The results showed that chlorine and sulfur elements were significantly enriched in dust compared to surface soils, and the southern study area with the highest concentration of chemical elements was found. Quartz, calcite, and albeit were the main minerals, and chlorite, elite, muscovite, and dolomite were identified as sub-minerals.
The results indicate that the chemical properties of dust have different time trends in the seasons. These changes can be attributed to changes in the probable origin of dust particles in different seasons and changes in the natural and human resources of dust production. High and positive correlation of chlorine ions, nitrate, and potassium and sodium ions with salinity in dust can be a reason for the origin of dust particles from soils of saline areas. Mineralogy of dust samples showed that the dust of the region contains minerals such as quartz, silica, calcite, albite, sodium feldspar, chlorite, dolomite, illite and calcium carbonate, some of which are similar. Clay mineralogy is topsoil in the study area. Minor changes in major and minor minerals in dust samples indicate the same and similar origin of dust production in the study area.
Key words: chemical properties, mineralogy, atmospheric dust, enrichment ratio, particle size.


Main Subjects

احمدی بیرگانی، ح.؛ فیض‏نیا، س.؛ میرنژاد، ح.؛ مک کویین، ک.؛ ابراهیمیان، س.؛ تابع‏الحجه، م.؛ ابراهیمی، ش.؛ سالمی مجرد، ا.؛ خلیفه‏زاده، ع. و بدری، ج. (1395). ترکیب شیمیایی ذرات TSP گرد و غبار به‏عنوان شاخصی در منشأیابی ژئوشیمیایی رسوبات، محیط زیست طبیعی، 69(2): 283-301.
اختصاصی، م. و جهان‏بخشی، ف. (1394). مدلها و ابزارهای برآورد و اندازهگیری فرسایش بادی و ریزگردها، یزد: انتشارات دانشگاه یزد.
باغی، م.؛ راشکی، ع. و محمودی قرائی، م. ح. (1399). بررسی خصوصیات شیمیایی و کانی‏شناسی گرد و غبار ورودی به شمال شرق ایران و پتانسیل بیماری‏زایی آن، جغرافیا و مخاطرات محیطی، 9(1): 139-153.
بی نام (1399). مرکز آمار ایران.
جعفری، ف. و خادمی، ح. (1396). مهم‏ترین ویژگی‏های شیمیایی و فیزیکی گرد و غبار اتمسفری شهر کرمان، علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 21(1): 13-22.
درمانی، م.؛ آرا، ه.؛ راشکی، ع. و مافی، آ. (1399). منشأیابی و بررسی خصوصیات فیزیکی و شیمیایی ذرات گرد و غبار در شهرستان سرخس، جغرافیا و مخاطرات محیطی، 9(3): 21-37.
دهقان، م.؛ سروش، ع. و صالحی، م. (1392). گنجایش تورم‏پذیری خاک شهر یزد، مهندسی عمران مدرس، 13(1): 109-116.
سبحانی، ب.؛ صفریان زنگیر، و. و فیض‏الله‏زاده، س. (1399). مدل‏سازی‏ و ‏پیش‏بینی ‏گرد‏ و‏ غبار ‏در‏ غرب ‏ایران، پژوهش‏های ‏جغرافیای‏ طبیعی،‏ 25(1): 17-35.
سلطانی گردفرامرزی، س.؛ قاسمی، م. و قانعی بافقی، م. (1399). تغییرات مکانی و زمانی نرخ فرونشست گرد و غبار شهر یزد و ارتباط آن با برخی پارامترهای اقلیمی، محیط زیست طبیعی، 73(4): 701-714.
صلاحی، ب. و بهروزی، م. (1399). شناسایی کانون‏های گرد و غبار و آنالیز فیزیکوشیمیایی ذرات آن در منطقة دزفول، مخاطرات محیط طبیعی، 9(23): 187-208.
علی صوفی، م. و شهریاری، ع. (1399). بررسی برخی خصوصیات شیمیایی و میزان برخی عناصر غذایی همراه با گرد و غبار دشت سیستان، مخاطرات محیط طبیعی، 9(23): 99-116.
قائمی‏نیا، ع. م.؛ حکیم‏زاده اردکانی، م.ع.؛ تقی‏زاده مهرجردی، ر. و دهقانی، ف. (1398). بررسی کمّیت، کیفیت، و قابلیت فرونشست املاح هوابرد در افزایش شوری خاک سطحی (مطالعة موردی: شمال دشت یزد- اردکان)، علوم آب و خاک، 23(4): 99-112.
کریمیان، ب.؛ لندی، ا.؛ حجتی، س. و احدیان، ج. (1395). بررسی خصوصیات فیزیکی، شیمیایی، و کانی‏شناسی گرد و غبار شهر اهواز، تحقیقات آب و خاک ایران، 47(1): 159-173 .
مقدسی، پ.؛ یزدی، م. و بیاتی، آ. (1394). ویژگی‏های زمین شیمیایی گرد و غبارهای میادین اصلی تهران، ‏علوم محیطی، 13(1): 75-84.
نوروزی، س. (1394). تغییرات مکانی و زمانی خصوصیات گرد و غبار در منطقةاصفهان و امکانسنجی استفاده از برگ چنار در پایش زیستی آلودگی اتمسفری، پایان‏نامة دکتری خاک‏شناسی، دانشکدة کشاورزی، دانشگاه صنعتی اصفهان.
Ahmady-Birgani, H.; Feiznia, S.; Mirnejad, H.; McQueen, K.; Ebrahimian, S.; Tabe Al-Hojat, M.; Ebrahimi, Sh.; Salemi-Mojarad, E.; Khalifeh Zadeh, Kh. and Badri, J. (2016). Chemical Composition of TSP Dust-Sized as an Indicator in Geochemical Fingerprinting of Sediments, Journal of Natural Environment, 69(2): 283-301. [In Persian].
Akhavan Ghalibaf, M. and Alhoseini Almodarresi, S. (2009). The Vertisols (as paleosols) with their related giant land cracks as a disaster in Central Iran deserts. International Conference on Desertification in Memory of professor John B. Thornes ICOD( 2009). Murcia University, Spain.
Ali Soufi, M. and Shahriari, A. (2020). Investigation of some chemical properties and amounts of some nutrient elements associated with dust in Sistan Plain. Environmental hazards, 23(9): 99-116. [In Persian].
Baghi, M.; Rashki, A. and Mahmudy Gharaie, M. (2020). Investigation of Chemical and Mineralogical Properties of Dust Entering Northeastern Iran and its Pathogenic Potential. Journal of Geography and Environmental Hazards, 9(1): 139-153. [In Persian].
Binam (2020). Statistical Centre of Iran.[In Persian].
Burt, R. (2004). Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report, 4th ed., Natural Resources Conservation Service, United States Department of Agriculture, Lincoln, Nebraska.
Cao, Z.; Yang, Y.; Lu, J. and Zhang, C. (2011). Atmospheric particle characterization, distribution, and deposition in Xian, Shaanxi Province, Central China. Environmental Pollution, 159: 577-584.
Darmany, M.; Ara, H.; Rashki, A. and Mafi, A. (2020). Source Identifying and Characterizing Physical and Chemical Fine Dust in Sarakhs City. Journal of Geography and Environmental Hazards, 9(3): 21-37. [In Persian].
Darvishi khatooni, J.; Abasaghi, F. and Mohammadi, A. (2018). Mineralogy and sedimentary geochemistry of incoming dust to the Khuzestan Province (case study: June 2012). Journal of Natural Environmental Hazards, 6(14): 1-16.
Dehghan, M.; Soroush, A. and Salehi, M. (2013). A Comprehensive Study on Swelling Potential of Yazd Clay. Modares Civil Engineering Journal. 13(1):109-116. [In Persian].
Ekhtesasi, M. and Jahanbakhshi, F. (2015). Models and tools for estimating and measuring wind erosion and fine dust, Yazd University Press. [In Persian].
Gee, G.W. and Bauders, J. W. (1986). Particle size analysis. PP. 383-409. In: A. Klute (Ed.). Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Agronomy Monograph. No. 9.
Ghaeminia, A. M.; Hakimzadeh Ardakani, M. A.; Taghizadeh- Mehrjardi, R. and Dehghani, F. (2019). Quantity, quality and capability assessment of airborne salts fallout on increasing the surface soil salinity (A case study: North of Yazd- Ardakan Plain). Journal of Water and Soil Science, 23(4): 99-112. [In Persian].
Hojati, S.; Khademi, H.; Cano, A. F. and Landi, A. (2012). Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. Catena, 88: 27-36.
Jafari, F. and Khademi, H. (2017). Important chemical and physical properties of atmospheric dust in Kerman city. Journal of Water and Soil Science, 21(1):13-22. [In Persian].
Karimian, B.; Landi, A.; Hojati, S. and Ahadian, J. (2016). Physicochemical and mineralogical characteristics of dust particles deposited in Ahvaz city. Iranian Journal of Soil and Water Research, 47(1): 159-173. [In Persian].
Lawrence, C. R. and Neff, J. C. (2009). The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chemical Geology, 267: 46-63.
McTainsh, G.H.; Nickling, W.G. and Lynch, A.W. (1997). Dust deposition and particle size in Mali, West Africa. Catena, 29: 307-322.
Menendez, I.; Diaz-Hernandez, J.L.; Mangas, J.; Alonso, I. and Sanchez-Soto, P.J. (2007). Airborne dust accumulation and soil development in the North-Eastsector of Gran Canaria (Canary Islands, Spain). Journal of Arid Environments, 71: 57-81.
Moghadasi, P.; Yazdi, M. and Biati, A. (2015). Geochemical characteristics of dust in main squares of Tehran. Environmental sciences, 13(1): 75-84. [In Persian].
Narayan, K.; Khanindra, P.; Abhisek, C.; Subodh, K.; Chowdary, V.M.; Satiprasad, C.P.; Singh, S. and Samrat, B. (2019). Assessment of foliar dust using Hyperion and Landsat satellite imagery for mine environmental monitoring in an open cast iron ore mining areas, Journal of Cleaner Production, 4(19): 30-33.
Norouzi, S. (2015). Spatial and temporal changes in dust characteristics in Isfahan region and feasibility study of using sycamore leaves in biological monitoring of atmospheric pollution. PhD Thesis in Soil Science, Faculty of Agriculture, Isfahan University of Technology. [In Persian].
Pye, K. (1992). Aeolian dust transport and deposition over Crete and adjacent parts of the Mediterranean Sea. Earth Surface Processes and Landforms, 17: 271-288.
Ramsperger, B.; Peinemann, N. and Stahr, K. (1998). Deposition rate and characteristics of aeolian dust in the semi-arid and sub-humid regions of the Argentinean Pampa. Journal of Arid Environments, 39: 467-476.
Rashki, A.; Eriksson, P. G.; Rautenbach, C. J.; Kaskaoutis, D. G.; Grote, W. and Dykstra, J. (2013). Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere, 90: 227-236.
Salahi, B. and Behrouzi. M. (2020). Detection of dust sources and Physico-chemical analysis of its particles in Dezful area. Environmental hazards, 23(9): 187-208. [In Persian].
Sobhani, B.; Safarian Zengir, V. and faizollahzadeh, S. (2020). Modeling and prediction of dust in western Iran, Physical Geography Research Quarterly, 52(1): 17-35. [In Persian].
Soltani-Gerdefaramarzi, S.; Ghasemi, M. and Ghaneie-Bafghi, M. J. (2021). Spatial and temporal Variability in the dust deposition rate of Yazd city and its relationship with some climatic parameters. Journal of Natural Environment, 73(4): 701-714. [In Persian].
Song, Z.; Wang, J. and Wang, S. (2007). Quantitative classification of northeast Asian dust events. Journal of Geophysical Research, 112: 100-115.
Taghizadeh-Mehrjardi, R. and Akbarzadeh, A. (2014). Soil physico-chemical, mineralogical, and micromorphological changes due to desertification processes in Yazd region, Iran. Archives of Agronomy and Soil Science, 60(4): 487-506.
Tiangang, Y.; Siyu, C.; Jianping, H.; Xiaorui, Z.; Yuan, L.; Xiaojun, M. and Guolon, Z. (2019). Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model, Atmospheric Environment, 15(207): 16-29.
William, G.; Tobin, M.; David, J. and Zach, U. (2018). Trajectory measurements for individual dust particles on the colorado dust Accelerator. Nuclear Inst. and Methods in Physics Research, 10(908): 269-276.
Yang, B.; Bruning, A.; Zhang, Z.; Dong, Z. and Espe, J. (2007). Dust storm frequency and its relation to climate changes in northern China during the past 1000 years. Atmospheric Environment, 41: 9288-9299.
Yazdi, M. and Behzad, N. (2009). Heavy metal contamination and distribution in the parks city of Islam Shahr, SW Tehran, Iran. The Open Environmental Pollution & Toxicology Journal, 1(1): 49-53.
Yazdi, M.; Soltanzadeh, H. and Biati, A. (2015). Geochemistry of Natural and Anthropogenic Dusts of Ray City, Tehran, Iran. International Journal of Environmental Monitoring and Protection, 2(6): 108-112.
Zarasvandi, A.; Carranza, E.J.M. and Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of Geochemical Exploration, 111: 138-151.
Zhiyuan, H.; Jianping, H.; Chun, Z.; Jiangrong, B.; Qinjian, J.; Yun, Q.; Ruby, L.;Taichen, F.; Siyu, C. and Jianmin, M. (2019). Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia. Atmospheric Environment, 6(14): 1352-2310.
Volume 53, Issue 1
April 2021
Pages 21-36
  • Receive Date: 09 October 2020
  • Revise Date: 19 April 2021
  • Accept Date: 19 April 2021
  • First Publish Date: 19 April 2021