Damghan playa Sand dune dynamic assessing using InSAR technique and object oriented classification

Document Type : Full length article


1 PhD Student at Department of Physical Geography, University of Tehran, Tehran, Iran

2 Professor of Department of Physical Geography, University of Tehran, Tehran, Iran

3 Associate Professor at the Faculty of Humanities. Department of Remote Sensing (GIS), Tarbiat Modares University, Tehran, Iran

4 Assistant Professor of Department of Physical Geography, University of Tehran, Tehran, Iran


Damage caused by the sand dunes movement is one of the most important environmental and socio-economic issues in desert region. erosion and wind processes study began with the work of Bagnold (1954). After significant advances in laboratory and physical approaches to the elements and forces involved in wind erosion and at the contemporary with the development of remote sensing tools and data and changes in methods and algorithms for interpreting aerial photographs and satellite images, the rapid emergence of planetary geomorphology and the search for analogies and similarities on other planets. Rapid developments in the geomorphology of wind processes took place. Using Landsat, ASTER and Quick bird images and LIDAR data, many studies have been done to classify sand dunes. After the launch of two ERS remote sensing radar satellites in 1991 and 1995, the value of CCD Was considered. But in Iran, most of the studies conducted in the desert region, such as the Damghan playa, have studied the changes in long-term periods, which are mainly of sediment origin and classified sand dunes using multispectral satellite data. The aim of this study was to use Sentinel-1 IW SAR time series data in arid regions to detect surface changes in the short term due to wind morph dynamic activity and on the other hand to evaluate the effectiveness of using both radar and optical data and Object-oriented classification model in the events and morphological changes detection of sand surfaces and forms. the results obtained from the processing of remote sensing data and classification and achieving the dimensions of sand dune mobility with the results of wind data analysis will be evaluated and verified.

Materials and methods
Damghan plain located in Damghan plain with longitude 54 10 to 54 40 east and latitude 36 36 to 36 10 north has a hot and dry desert climate and an average rainfall of 100 mm per year, which due to the desert nature, is prone to wind morph dynamic performance. Therefore, in the present study, we aimed to evaluate the mobility of sand dunes as part of the natural hazards active in the region. The research method is library, remote sensing and surveying. Data analysis is based on two main concepts; segmentation and classification. Initially, based on geological and topography maps and field survey, geomorphology maps were created. Then based on the prepared and adapted maps and field surveillance, sandy forms were limited. Then, in order to determine the working units, using the CCD technique with Sentinel-1 radar images, the active and inactive parts of the sand forms were detected. Two radar interfrograme (Master and slave) related to the two dates of 14/05/2017 and 22/03/2018 were used to extract the CCD (based on phase difference).
Finally, with the identification of work units, automatic detection and extraction of sand dunes was targeted, and for this purpose, the bottom-up hierarchical object-oriented method and top-down classification using the growing region technique was used. Also, by extracting sand dunes using object-oriented classification, the values and direction of moving the dune were extracted using Guy, 1995 optimized model and the corresponding sand rose were drawn. Wind rose analysis and drawing related to wind statistics of Damghan synoptic station (the closest meteorological station to the study area) in the statistical period of 1384-96 was also performed with the aim of verifying the findings of the previous step.

Result and discussion
A: Extract sandy forms
Image enhancement is the first step in preparing an image for the extraction of image elements (including sand dunes). Due to the importance of the dune slip face, in the process of identifying the displacement and sand dunes movement, and its lower compaction coefficient than other parts of a sand dune, in order to detection This enhance method, by using the most abundant discontinuity search, distinguishes brighter borders that forming sand dune steep slope from other parts of dune and around environments. The output of this filter is an image in which the sand dunes slip face, with different radiometric intense, is marked from the surrounding sand surfaces.

B: Detecting and extracting sand dunes
In order to evaluate the displacement amount and direction, the object-oriented classification paradigm was used to automatically detect the edges as dune front. Instead of just evaluating pixels, the spatial pattern of objects and forms is also considered. Therefore, the initial segmentation was performed using a scale factor "100" that determined the maximum heterogeneity in the diagnosis of the forms. in addition to using radiometric values, classes can be formed based on geometry and related elements. The rules used are Brightness and Compactness. First, by analyzing the values of average brightness with a threshold of 165, the overall sand dune pattern as the first layer was created. Then, using the Compactness rule, the pixels that were recognized as the dune slip face by the spectral feature in the previous step were eliminated from the classes.

C: calculation the sand dunes amount and direction displacement.
Sand dunes displacement calculated by considering the end edge, as the progressive edge at successive times and measuring the distance between two consecutive lines in two consecutive years. To evaluate the dunes movement direction, the axis of symmetry of each hill was selected as the main axis and the initial and final point of this line on the downwind front of sand dunes in both the first and last years were considered. The azimuth line or the direction of movement relative to the north was drawn and this angle was calculated and its sand rose with an angle of 135 degrees was drawn

This study, suggested a new approach to detect sand dynamics using radar InSAR techniques and object-oriented classification using high resolution optical images. The results of InSAR processing, and CCD technique, was able to recognize active and inactive sand dunes dynamic, and display them in continuous numerical values (fully active to fully stabilized hills).
The application of OBIA on Bird’s eye and Geo eye images (2003-2016) results, indicates that the 22.4 m movement of hills is mainly in the southwest direction in a period of 13 years and 1.7 m for each year. The result of comparing wind rose (wind data analysis) and sand rose (sand movement data analysis) shows a significant relationship between 80% of northwest-southeast wind frequency in relation to 135 ° azimuth for 75% of sand dunes movement and 15% of north-south wind frequency in relation to 180° azimuths of 25% of sand dunes movement.


Main Subjects

پریمی، م.؛ خانه باد، محمد؛ موسوی حرمی، رضا و محبوبی، اسدالله (1394). رسوب‏شناسی و مورفومتری تپه‏های ماسه‏ای (نوع برخان و نبکا) حاشیة کویر حاج‏علی‏قلی واقع در جنوب دامغان- 1394، فصل‏نامة کواترنری ایران، دورة 1، ش 3، صص 255-264.
زهتابیان، غ.؛ علوی‏پناه، سیدکاظم و احسانی، امیرهوشنگ (1382). بررسی و تفکیک خاک‏های حاشیة پلایا با استفاده از داده‏های رقومی ماهوارة لندست 7 ETM+ مطالعة موردی: پلایای دامغان، پژوهش و سازندگی، دورة 16، ش 1، صص 30-38.
عطامرادی، ب. (1378). بررسی اشکال و نوع تپه‏های ماسه‏ای به‏منظور مبارزه با فرسایش بادی در ارگ دامغان، دانشگاه تهران، مرکز تحقیقات کویری و بیابانی ایران، پایان‏نامة کارشناسی ارشد.
علوی‏پناه، ک.؛ احسانی، امیرهوشنگ و امیدی، پرویز (1383). بررسی بیابان‏زایی و تغییرات اراضی پلایای دامغان با استفاده از داده‏های ماهواره‏ای چندزمانه و چندطیفی، بیابان، ج 9، ش 1، صص 144-154.
ﻣﺮﺗﻀﺎﻳﻰ ﻓﺮﻳﺰﻫﻨﺪﻯ، ق. و ﺷﻬﺒﺎﺯﻯ، ﺭﺿﺎ (1390). ﺑﺮﺭﺳﻰ ﻓﺮاﻳﻨﺪ ﺑﻴﺎﺑﺎن‌‌ﺰﺍﻳﻰ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻌﻴﺎﺭ ﻓﺮﺳﺎﻳﺶ ﻭ ﺑﺎ ﺗأﻛﻴﺪ ﺑﺮ ﻧﻘﺶ ﻛﺎﺭﺑﺮﻯ ﺍﺭﺍﺿﻰ (ﻣﻄﺎﻟﻌة ﻣﻮﺭﺩﻯ: ﺣﻮضة ﺁﺑﺨﻴﺰ ﭼﺸﻤﻪ‏ﻋﻠﻰ ﺩﺍﻣﻐﺎﻥ)، ﻋﻠﻮﻡ ﻭ ﻣﻬﻨﺪﺳﻰ ﺁﺑﺨﻴﺰﺩﺍﺭﻯ ﺍﻳﺮﺍﻥ، صص 45-52.
مقصودی، م.؛ یمانی؛ مشهدی، ناصر؛ تقی‏‏زاده، مهدی و ذهاب ناظوری، سمیه (1390). شناسایی منابع ماسه‏های بادی ارگ نوق با استفاده از تحلیل باد و مورفومتری ذرات ماسه، مجلة جغرافیا و برنامهریزی محیطی، س 22، شمارة پیاپی 43، ش 3، صص 1-16.
Abba, M.; Essahlaoui, A.; Elkharki, O. and Mechbouh, J. (2019). The Use of Interferometric Coherence of Sentinel-1a Images to Study Silting in South-East Morocco, Annals of Ecology and Environmental Science, Vol. 3, No. 4, PP. 37-49.
Abdelkareem, M.; Gaber, A.; Abdalla, F. and El-Din, GK. (2020). Use of optical and radar remote sensing satellites for identifying and monitoring active/inactive landforms in the driest desert in Saudi Arabia, Geomorphology, Vol. 362, PP. 107-197 .
Alali, A. and Benmohammadi, A. (2013). L'ensablement dans la plaine de Tafilalet (Sud Est du Maroc), Larhyss Journal, ISSN 1112-3680, No. 16, PP. 53-75.
Alawi panah, K.; Ehsani, Amirushang and Omidi, Parviz (2004). Investigation of desertification and land degradation in Damghan playa using multispectral and multi-spectral satellite data, Desert, Vol. 9, Issue 1, PP. 144-154.
Atamoradi, B. (1999). Investigation of the shape and type of sand dunes in order to harness wind erosion in Damghan erg, Tehran University, Kavir and Desert Research Center of Iran, Master's thesis.
Bagnold, R.A. (1941). The Physics of Blown Sand and Desert Dunes. Methuen, London.
Benalla, M.; Alem, E.M.; Rognon, P.; Desjardins, R.; Hilali, A. and Khardi, A. (2003). Les dunes du Tafilalet (Maroc) : dynamique éolienne et ensablement des palmeraies. Science et changements planétaires / Sécheresse, Vol. 14, No. 2, PP. 73-83.
Benz, U.; Hofmann, P.; Willhauck, G.; Lingen- felder, I. and Heynen, M. (2004). Multi- resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready informa- tion. ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 58, PP. 239-258.
Bodart, C. and Ozer, A. (2018).  Detection and monitoring of sand dune mobility in southeast Niger using multi- temporal coherence images.
Bodart, C.; Ozer, A. and Derauw, D. (2010). Suivi de l’activité des dunes au Niger au moyen de la cohérence interférométrique ERS 1/2, BSGLg, viewed 25 December 2020, <https://popups.uliege.be/0770-7576/index.php?id=1012.>.
Bourke, M. C.; Ewing, R. C.; Finnegan, D. and McGowan, H. A. (2009). Sand dune movement in the Victoria Valley, Antarctica. Geomorphology, 109: 148-160.
Bubenzer, O. and Bolten, A. (2008). The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology, 102: 221-231.
Bullard, J. E.; White, K. and Livingstone, I. (2011). Morphometric analysis of aeolian bedforms in the Namib Sand Sea using ASTER data. Earth Surface Processes and Landforms, 36: 1534-1549.
Dakir, D.; Rhinane, H.; Saddiqi, O.; El Arabi1, E. and  Baidder, L. (2016). Automatic extraction of dunes from google earth images new approach to study the dunes migration in the laâyoune city of morocco., The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-2/W1,
Damien  Closson and Nada Milisavljevic (2017). In SAR Coherence and Intensity Changes Detection, DOI: 10.5772/65779.
Drăguţ, L.; Eisank, C. and Strasser, T. (2011). Local variance for multi-scale analysis in geomorphometry’, Geomorphology, Vol. 130, No. 3-4, PP. 162-172.
Drǎguţ, L.; Tiede, D. and Levick, SR. (2010). ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data, International Journal of Geographical Information Science, Vol. 24, No. 6, PP. 859-871.
El Ghannouchi, A., 2007, Dynamique éolienne dans la plaine de Souss: Approche modélisatrice de la lutte contre l’ensablement, Mémoire de thèse de l’Université Mohammed V – Agdal Faculté Des Sciences, Rabat, Maroc, 193p.
Elhadi, E. M.; Zomrawi, N. and Guangdao, Hu. (2009). Landscape Change and Sandy Desertification Monitoring and Assessment. American Journal of Environmental Sciences, 5: 633-638.
Gaber, A.; Abdelkareem, M.; Abdelsadek, I. S.; Koch, M. and El-Baz, F. (2018). Using InSAR coherence for investigating the interplay of fluvial and aeolian features in arid lands: Implications for groundwater potential in Egypt, Remote Sens, Vol. 10, No. 6, PP. 1-18.
Gay Jr., S.P. (1999). Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology 27: 279-293.
Ghadiry, M.; Shalaby, A. and Koch, B. (2012). A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 15: 53-65.
Haijiang, L.; Chenghu, Z.; Weiming, C.; En, L. and Rui, L. (2008). Monitoring sandy desertification of Otindag Sandy Land based on multi-date remote sensing images. Acta Ecologica Sinica, 28(2): 627-635.
Havivi, S.; Amir, D.; Schvartzman, I.; August, Y.; Maman, S.; Rotman, SR. and Blumberg, DG. (2018). Mapping dune dynamics by InSAR coherence, Earth Surface Processes and Landforms, Vol. 43, No. 6, PP. 1229-1240.
Hermas, E.; Leprince, S. and Abou El-Magd, I. (2012). Retrieving sand dune movements using sub-pixel correlation of multi- temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt Remote Sensing of Environment, 121: 51-60.
Hesse, R. (2009). Using remote sensing to quantify aeolian transport and estimate theage of the terminal dune field Dunas Pampa Blanca in southern Peru. QuaternaryResearch, 71: 426-436.
Hugenholtz C. H. and Barchyn, T. E. (2010). Spatial analysis of sand dunes with a new global topographic dataset: New approaches and opportunities. Earth Surface Processes and Landforms, 35: 986-992.
Klir, G.J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Application. 1st ed., Englewood Cliffs, NJ, Prentice Hall.
Losson, D. and Milisavljevic, N. (2017). In SAR Coherence and Intensity Changes Detection, Mine Action - The Research Experience of the Royal Military Academy of Belgium.
Mahyou, H.; Tychon, B.; Balaghi, R.; Mimouni, J. and Paul, R. (2010). Désertification des parcours arides au Maroc. Tropicultura, 28(2): 107-114.
Mainguet, M.; Dumay, F.; Oould, EL.; Hacen, M. L. and Maefoudh, A. (2001). Diagnostic par la télédétection d’un changement de rythme de la dynamique éolienne : période d’amorce de la désertification en Mauritanie saharo-sahélienne. Télédétection, Vol. 2, No. 2, PP. 129-136.
Massonnet, D. and Feigl, KL. (1998). Radar interferometry and its application to changes in the Earth’s surface, Reviews of Geophysics, Vol. 36, No. 4, PP. 441-500.
Mather, P.M. .  (2005). Computer processing of remotely-sensed images: an introduction, John Wiley & Sons, Ltd, Chichester.
Niang, A. J. (2008). Les processus morphodynamique, indicateurs de l’état de la désertification dans le sud-ouest de la Mauritanie. Approche par analyse multi source. Mémoire de thèse de l’Université de Liège, 286p.
Nouaceur, Z. (2013). Nouakchott, une capitale au péril des vents de sable, de l’ensablement et des inondations. Sécheresse, 24: 182-93. 
Sahraoui, A. (2008). Erosion éolienne et risque d’ensablement dans la région de Barika: Approche quantitative et cartographie automatique. Mémoire de thèse Université El Hadj Lakhder-Batna Faculté des Sciences Département des Sciences de la Terre, Algérie, 132p.
Schiewe, J. (2012). Segmentation of high-resolu- tion remotely sensed data – concepts, appli- cations and problems. In: Symposium on Geospatial Theory, Processing and Applica- tions, Ottawa.
Shackelford, Aaron K. (2003). Student Member, IEEE, and Curt H. Davis, Senior Member, IEEE. A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas., Ieee transactions on geoscience and remote sensing, Vol. 41, No. 9.
Shiran Havivia, Doron Amirb, Ilan Schvartzmanb, Yitzhak Augustc, Shimrit Mamand, Stanley R. Rotmanb, Dan G. Blumberga,  (2017). Mapping dune dynamics by InSAR coherence., Earth Surface Processes and Landforms, p 1-36
Taubenböck, H. T.; Esch, A.; Wurm, M.; Roth, A. and Dech, S. (2010). Object-based feature extraction using high spatial resolution satellite data of urban areas, Journal of Spatial Science, Vol. 55, No. 1, 117-132.
Tchakerian, VP. (1996). Desert Aeolian Processes, Dordrecht Springer Netherlands.
Tsoar, H. (2002). Climatic Factors Affecting Mobility and Stability of Sand Dunes, Proceedings of ICAR5/GCTE-SEN Joint Conference, P. 423.
Tsoar, H.A. and Blumberg, D.G. (2002). Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surface Processes and Landforms, 27: 1147-1161.
Venard, C.; Delaitre, E.; Callot, Y.; Ouessar, M. and Ouerchfani, D. (2010). Exploitation d’images satellitaires à très haute resolution spatial fournies par Google earth Exemple d’application à l’étude d’olivearie en Tunisie. Revue Télédétection, 2010, Vol. 9, No. 1, PP. 59-71.
Vermeesch, P. and Drake, N. (2008). Remotely sensed dune celerity and sand fluxmeasurements of the world's fastest barchans (Bodele, Chad). Geophysical Research Letters, 35.
Vries, S.; Southgate, H.N.; Kanning, W. and Ranasinghe, R. (2012). Dune behavior and aeolian transport on decadal timescales, Coastal Engineering, Vol. 67, PP. 41-53.
Yager, R. (1987). Fuzzy Sets and Applications: Selected Papers by L. Zadeh, New York, John Wiley.
Perimi. M., Khaneabad M., Mousavi Harami. R. & Mahboubi. A. (2015) Sedimentology and morphometry of sand dunes (Barkhan and Nebka type) on the margin of Haj Ali Gholi desert located in the south of Damghan - 2015, Quaternary Journal of Iran, Volume 1, Issue 3, pp. 255-264.
Zehtabian, G.R .; Alavi Panah, S. K. and Ehsani, A. H. (2003). Investigation and Separation of Playa Marginal Soils Using Landsat 7 ETM Digital Data + Case Study: Damghan Playa, Research and Construction, Volume 16, Issue 1, pp. 30-38.
Atamoradi, B. (1999). Investigation of shapes and types of sand dunes to combat wind erosion in Damghan Erg, University of Tehran, Desert Research Center of Iran, M.Sc. Thesis.
Mortezaei Frizhendi. Gh., Shahbazi. R. (2011)و Investigation of desertification process using erosion criteria and emphasizing the role of land management, Desert Journal, Vol. 9, No. 1, pp. 144-154.
Maghsoudi, M .; Yamani. M. Mashhadi, N.; Taghizadeh, M. and Zahab Nazouri, S. (2011). Identification of wind sand sources in Arg-e-Nogh using wind analysis and morphometry of sand particles, Journal of Geography and Environmental Planning, Q22, Serial Issue 43, Vol. 3, pp. 1-16.


Volume 53, Issue 2
September 2021
Pages 157-176
  • Receive Date: 06 July 2019
  • Revise Date: 16 July 2021
  • Accept Date: 17 July 2021
  • First Publish Date: 21 July 2021