احمدی، محمود؛ داداشی رودباری، عباسعلی و احمدی، حمزه (1397 الف). پایش دمای شبهنگام سطح زمین در گسترة ایران مبتنی بر برونداد سنجندة MODIS، فصلنامة تحقیقات جغرافیایی، ۳۳ (۱): ۱۷۴-۱۹۰.
احمدی، محمود؛ داداشی رودباری، عباسعلی و احمدی، حمزه (1397 ب). واکاوی دمای روزهنگام سطح زمین ایران مبتنی بر برونداد سنجندة MODIS، فصلنامة علوم محیطی، 16(1): 47-68.
داداشی رودباری، عباسعلی (1399). واکاوی وردایی زمانی- مکانی الگوهای قائم و افقی ریزگردها و ارزیابی بازخوردهای آبوهوایی آن در ایران، رسالة دکتری آبوهواشناسی، دانشکدة علوم زمین، دانشگاه شهید بهشتی.
مرادی، مسعود؛ صلاحی، برومند و مسعودیان، سیدابوالفضل (1395). پهنهبندی دمای رویة زمین ایران با دادههای مودیس، مجلة مخاطرات محیط طبیعی، ۵(7): ۱۰۱-116.
مسعودیان، سیدابوالفضل (1390). آبوهوای ایران، مشهد: شریعة توس.
Alkama, R. and Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273): 600-604.
Bellaoui, M.; Hassini, A. and Bouchouicha, K. (2017). Remote sensed land surface temperature anomalies for earthquake prediction. In International Journal of Engineering Research in Africa (Vol. 31, pp. 120-134). Trans Tech Publications Ltd.
Benz, S. A.; Davis, S. J. and Burney, J. A. (2021). Drivers and projections of global surface temperature anomalies at the local scale. Environmental Research Letters.
Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C. and Hese, S. (2017). Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote sensing of environment, 193: 225-243.
Bhardwaj, A.; Singh, S.; Sam, L.; Joshi, P. K.; Bhardwaj, A.; Martín-Torres, F. J. and Kumar, R. (2017). A review on remotely sensed land surface temperature anomaly as an earthquake precursor. International journal of applied earth observation and geoinformation, 63: 158-166.
Boisier, J. P.; de Noblet‐Ducoudré, N.; Pitman, A. J.; Cruz, F. T.; Delire, C.; Van den Hurk, B. J. J. M.; ... and Voldoire, A. (2012). Attributing the impacts of land‐cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. Journal of Geophysical Research: Atmospheres, 117(D12).
Coolbaugh, M. F.; Kratt, C.; Fallacaro, A.; Calvin, W. M. and Taranik, J. V. (2007). Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of Environment, 106(3): 350-359.
Dadashi-Roudbari, A. and Ahmadi, M. (2020). Evaluating temporal and spatial variability and trend of aerosol optical depth (550 nm) over Iran using data from MODIS on board the Terra and Aqua satellites. Arabian Journal of Geosciences, 13(6): 1-23.
Duhan, D. and Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122: 136-149.
Fallah-Ghalhari, G.; Shakeri, F. and Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 138(3-4): 1539-1562.
Fily, M.; Royer, A.; Goıta, K. and Prigent, C. (2003). A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sensing of Environment, 85(3): 328-338.
Giorgi, F.; Hurrell, J. W.; Marinucci, M. R. and Beniston, M. (1997). Elevation dependency of the surface climate change signal: a model study. Journal of Climate, 10(2): 288-296.
Harris, P. P.; Folwell, S. S.; Gallego-Elvira, B.; Rodríguez, J.; Milton, S. and Taylor, C. M. (2017). An evaluation of modeled evaporation regimes in Europe using observed dry spell land surface temperature. Journal of Hydrometeorology, 18(5): 1453-1470.
Houghton, J. T.; Ding, Y. D. J. G.; Griggs, D. J.; Noguer, M.; Van der Linden, P. J.; Dai, X.; ... and Johnson, C. A. (2001). Climate change 2001: the scientific basis. The Press Syndicate of the University of Cambridge.
Jia, L.; Marco, M.; Bob, S.; Lu, J. and Massimo, M. (2017). Monitoring water resources and water use from earth observation in the belt and road countries. Bulletin of Chinese Academy of Sciences, 32(Z1): 62-73.
Jin, M. and Dickinson, R. E. (2010). Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters, 5(4): 044004.
Kendall, M. G. (1955). Rank correlation methods.
King, M. D. (1999). EOS science plan: the state of science in the EOS program. National Aeronautics and Space Administration.
Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E. and Li, S. (2015). Local cooling and warming effects of forests based on satellite observations, Nat. Commun, 6: 6603.
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
Mattar, C.; Franch, B.; Sobrino, J. A.; Corbari, C.; Jiménez-Muñoz, J. C.; Olivera-Guerra, L.; ... and Mancini, M. (2014). Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area. Remote sensing of environment, 147: 23-42.
Mildrexler, D. J.; Zhao, M. and Running, S. W. (2011). A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. Journal of Geophysical Research: Biogeosciences, 116(G3).
Naudts, K.; Chen, Y.; McGrath, M. J.; Ryder, J.; Valade, A.; Otto, J. and Luyssaert, S. (2016). Europe’s forest management did not mitigate climate warming. Science, 351(6273): 597-600.
Oku, Y.; Ishikawa, H.; Haginoya, S. and Ma, Y. (2006). Recent trends in land surface temperature on the Tibetan Plateau. Journal of climate, 19(12): 2995-3003.
Panah, S. K.; Mogaddam, M. K. and Firozjaei, M. K. (2017). Monitoring Spatiotemporal Changes of Heat Island in Babol City Due to Land Use Changes. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
Qin, J.; Yang, K.; Liang, S. and Guo, X. (2009). The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97(1-2): 321.
Rigden, A. J. and Li, D. (2017). Attribution of surface temperature anomalies induced by land use and land cover changes. Geophysical Research Letters, 44(13): 6814-6822.
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324): 1379-1389.
Solangi, G. S.; Siyal, A. A. and Siyal, P. (2019). Spatiotemporal dynamics of land surface temperature and its impact on the vegetation. Civil Engineering Journal, 5(8): 1753-1763.
Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor, M.; Allen, S. K.; Boschung, J.; ... and Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535.
Velde, R.; Su, Z.; Ek, M.; Rodell, M. and Ma, Y. (2009). Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site. Hydrology and Earth System Sciences, 13(6): 759-777.
Weng, Q.; Firozjaei, M. K.; Kiavarz, M.; Alavipanah, S. K. and Hamzeh, S. (2019). Normalizing land surface temperature for environmental parameters in mountainous and urban areas of a cold semi-arid climate. Science of the Total Environment, 650: 515-529.
Weng, Q.; Hu, X.; Quattrochi, D. A. and Liu, H. (2013). Assessing intra-urban surface energy fluxes using remotely sensed ASTER imagery and routine meteorological data: A case study in Indianapolis, USA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10): 4046-4057.
Xiong, X.; Chiang, K.; Sun, J.; Barnes, W. L.; Guenther, B. and Salomonson, V. V. (2009). NASA EOS Terra and Aqua MODIS on-orbit performance. Advances in Space Research, 43(3): 413-422.
Xue, Y.; Diallo, I.; Li, W.; David Neelin, J.; Chu, P. C.; Vasic, R.; ... and Fu, C. (2018). Spring land surface and subsurface temperature anomalies and subsequent downstream late spring‐summer droughts/floods in North America and East Asia. Journal of Geophysical Research: Atmospheres, 123(10): 5001-5019.
Yan, Y.; Mao, K.; Shi, J.; Piao, S.; Shen, X.; Dozier, J.; ... and Bao, Q. (2020). Driving forces of land surface temperature anomalous changes in North America in 2002–2018. Scientific reports, 10(1): 1-13.
Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J. C.; Jin, C. and Li, X. (2021). Understanding land surface temperature impact factors based on local climate zones. Sustainable Cities and Society, 69: 102818.
Zhang, X.; Estoque, R. C. and Murayama, Y. (2017). An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable cities and society, 32: 557-568.
Zhao, L.; Ping, C. L.; Yang, D.; Cheng, G.; Ding, Y. and Liu, S. (2004). Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Global and Planetary Change, 43(1-2): 19-31.
Salama, M. S., Van der Velde, R., Zhong, L., Ma, Y., Ofwono, M., & Su, Z. (2012). Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change, 114(3), 769-781.