Spatial analysis of outgoing longwave radiation trend in Iran

Document Type : Full length article

Authors

1 Professor of Climatology, Faculty of Geography & Planning, Department of Climatology, University of Tabriz. Tabriz. Iran

2 Assistant Professor of Climatology, Faculty of Geography & Planning, Department of Climatology, University of Tabriz. Tabriz, Iran

3 Professor of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran

4 Ph.D in Satellite Climatology, Department of Climatology, Faculty of Geography & Planning, University of Tabriz, Tabriz, Iran

Abstract

Introduction
Climate change is considered as one of the environmental challenges in recent decades. Climatologists have evaluated the behavior and change of climatic elements to identify weather change and its importance to the structure of the Earth's weather in recent years. Trend is one of the most critical components of a series, which is very practical in climate to investigate the long-term orientation of time series. Outgoing long Wave Radiation (OLR) is one of the basic variables of weather, as well as the core component of the earth radiation budget (Whitburn et al., 2021: 1. Scherrick et al., 2018: 1), which is known as an essential parameter in applications for cloud identification and precipitation estimation. Therefore, it is necessary to study Outgoing long Wave Radiation trends at different temporal and spatial scales. Mann-Kendall test is one of the widely used non-parametric tests, which has been applied in climate studies, especially in examining the trend significance (Gauss and Trajkovic, 2013: 172. Nelson, 2001: 57). Kefayat Motlagh et al. (2018: 128) indicated that the trend of earthlight radiation is increasing by 0.4 watts per square meter in each decade, while the trend of Iran's earthlight radiation is more than three times (1.4 watts per square meter) the global trend in the same period. Sari Sarraf et al. (2015: 33) investigated the effects of global warming on the cities’ climate in the Urmia Lake basin using the Kendall method and the least-squares error. They concluded that the average rainfall in the whole region decreased by about 4 mm per year. Chu and Wang (1997: 636) examined the trend through Mann-Kendall statistics to find climate change in convective precipitation in the western Pacific and Indian Oceans from Outgoing long Wave Radiation. They found a significant decrease in OLR in the tropical central and western Pacific and a large part of the Indian Ocean, while the largest increase in OLR over time was in North Australia. In this study, the trend and changes were investigated using the non-parametric Man Kendall method, the amount of changes was determined by Sen's Slope method, and hot spots analysis was performed by Jay statistical method given. In addition, spatial and cluster analysis was performed on the average data and seasonal variation coefficient due to the importance of Outgoing long Wave Radiation at different temporal and spatial scales.
Methodology (Materials and methods)
Iran, with an area of 1648195 square kilometers, is located between 25 to 40 degrees north latitude and 44 to 63 degrees east longitude. The data of the Atmospheric Infrared Sounder (AIRS), Aqua satellite, were used to measure Outgoing long Wave Radiation for a statistical period of 17 years (01/07/2002 to 01/07/2019). MATLAB, ArcGIS, and SPSS software were used for calculations and maps. First, the average monthly data maps of Outgoing long Wave Radiation were prepared, and then, the standard deviation parameter was used to show the data dispersion. Moreover, the Mann-Kendall test was used to determine the trend of outgoing long wave radiation on each cell in Iran, and the slope of the data series trend line was calculated by Sen's Slope estimator method. Spatial variations of outgoing long wave radiation were calculated over time as spatial behavior using hot spot map analysis.
Results and Discussion
According to Stefan–Boltzmann law, the Earth's surface and atmosphere emit energy in waves in proportion to their temperature. These waves propagate in the range of long wavelengths, i.e., between 4 and 100 microns given the normal surface temperature and atmosphere (Kaviani and Alijani, 2000: 94). According to the maps, the average long-wave radiation fluctuates between wet and dry seasons as well as geographical offerings, and its amount is higher in the dry season and the southern regions of the country. One of the reasons for the maximum outgoing long wave radiation of southern Iran in early spring is the angle of vertical radiation of the sun and the clear sky, which receives more energy than the latitudes, and the amount of energy output is more in the south of Iran than in the north. The outgoing long wave radiation increases gradually due to the decrease in cloudiness, and more energy is received in longer geographical areas gradually, in May and June, with the onset of summer as the day length increases. The ingoing and outgoing radiation becomes more uniform throughout the regions of Iran, except for the mountainous areas and the coasts. According to the results of cluster diagrams in the three seasons of spring, autumn, and winter, the radiation patterns of the basins are similar to the latitude and mountainous areas in Iran. The largest cluster in spring belongs to the south of the Alborz Mountains and the west of the Middle Zagros Mountains depending on latitude and sunny slopes. The highest uniformity in all seasons is located in the southwestern quarter of Iran, and Haraz heights in southern Iran are distinguished as a cold spot among the surrounding basins. Examination of the trend by the Mann-Kendall method showed no significant trend on an annual scale, but monthly and seasonal anomalies are quite evident. The descending trend of long wave radiation can be confirmed only in May and September in some parts of the country, and the dominant trend in most months of summer, autumn, and winter is increasing in most parts of the country, including northern offerings. The results of the G-statistic study also show the changes of hot spots towards northern offerings.
Conclusion
The trend of 17 years of outgoing long wave radiation of the earth (2003-2019) was investigated in monthly, seasonal, and annual time scales using non-parametric Men-Kendall test and hot spot statistics (G). Changes and abnormalities of long wave radiation were observed on a monthly and seasonal time scale in most parts of the country. These changes can be due to changes in the amount of energy input, cloud cover, and the type of clouds, aerosols, atmospheric compounds, such as moisture from global warming and other greenhouse gases. In addition, changes in land cover such as vegetation, forests, water resources, salinities, and sand dunes can influence the sensible heat and change of ground wave radiation due to the amount of moisture, which needs further investigation in this regard.

Keywords

Main Subjects


احمدی، م.؛ احمدی، ح. و داداشی رودباری، ع. (1397). واکاوی روند تغییرات و الگوی فضایی ابرناکی سالانه و فصلی ایران، مجلة مخاطرات محیط طبیعی، دورة هفتم، شمارة 15، صص 237-254.
امیر‏رضائیه، ع.؛ پرهمت، ج. و احمدی، ف. (1395). بررسی روند تغییرات بارش و دمای شمال ‏غرب کشور در نیم قرن اخیر، نشریة آبیاری و زهکشی ایران، جلد دهم، شمارة 6، صص 797-809.
بابایی‏فینی، ا.؛ طاهر، ص. و کریمی، م. (1393). تحلیل فضایی- زمانی رخداد گرد و غبار در غرب ایران، مجلة محیط‏شناسی، دورة چهلم، شمارة 2، صص 375-388.
بلیانی، ی. و حکیم‏دوست، س. ی. (1393). اصول و مبانی پردازش داده‏های مکانی (فضایی)، تهران: آزادپیما.
حجازی‏زاده، ز.؛ بزمی، ن.؛ رحیمی، ع.؛ طولایی‏نژاد، م. و بساک، ع. (1396). مدل‏سازی فضایی- زمانی آلبدو در گسترة ایران‏زمین، نشریة تحقیقات علوم جغرافیایی، سال هفدهم، شمارة 47، صص 1-17.
رحمانی‏کم، ع. ا. (1394). استخراج و روندیابی رطوبت خاک با استفاده از داده‏های ماهوارهای سنجش از دور، پایان‏نامة کارشناسی ارشد رشتة عمران، دکتر سعید گلیان، دانشکدة عمران، دانشگاه شاهرود.
رستم‏زاده، ه.؛ رسولی، ع.؛ وظیفه‏دوست، م. و ملکی، ن. (1399). ارزیابی و تحلیل نقش خصوصیات فیزیکی ابر در مقدار بارش محتمل با استفاده از داده‏های ماهواره‏ای MSG منطقة مورد مطالعه: غرب، ایران، نشریة علمی- پژوهشی جغرافیا و برنامه‏ریزی، سال بیست‏و‏چهارم، شمارة 72، صص 225-245.
رسولی، ع.‏ ا.؛ جهان‏بخش، س. و احمدرضا، ق. (1392). بررسی تغییرات زمانی و مکانی مقدار پوشش ابر در ایران، فصل‏نامة تحقیقات جغرافیایی، سال بیست‏وهشتم، شمارة 3، صص 85 -102.
رئیس‏پور، ک. و رزمی، ر. (1399). برآورد ابرناکی در جو ایران با استفاده از فرآورده‏های ابر پرتوسنج طیفی تصویربرداری چندزاویه‏ای (MISR)، تحقیقات منابع آب ایران، سال شانزدهم، شمارة 3، صص 257-271.
ساری ‏صراف، ب.؛ جلالی‏ عنصرودی، ط. و سرافروزه، ف. (1394). اثرات گرمایش جهانی بر اقلیم شهرهای واقع در حوضة دریاچة ارومیه، دو فصل‏نامة پژوهش‏های بوم‏شناسی شهری، سال ششم، شمارة 2، صص 33-48.
علایی طالقانی، م؛ (1382). ژئومورفولوژی ایران، چ 2، تهران: قومس.قصاب ‏فیض، م. و اسلامی، ح. (1396). ارزیابی روند تغییرات بارندگی با روش من- کندال و رگرسیون خطی در استان خوزستان، فصل‏نامة علمی- تخصصی مهندسی آب، دورة پنجم، شمارة 2، صص 121-113.
کاویانی، م. ر. (1380). میکروکلیماتولوژی، چ 3، تهران: سمت.
کاویانی، م، ر. و علیجانی، ب. (1371). مبانی آب و هواشناسی، چ 7، تهران: سمت.
کفایت مطلق، ا. ر. و خسروی، م. (1397). واکاوی روند سالانة تابش زمین‏تاب ایران با داده‏های دورسنجی، دومین کنفرانس ملی آب و هواشناسی ایران، دانشگاه فردوسی مشهد. https://civilica.com/doc/781128/.
کفایت مطلق، ا. ر.؛ خسروی، م. و مسعودیان، س. ا. (1398). تحلیل میانگین درازمدت تابش بلند زمینی ایران با داده‏های سنجش از دور، فصل‏نامة علمی- پژوهشی اطلاعات جغرافیایی، دورة بیست‏و‏هشتم، شمارة 109، صص 200-209.
کفایت مطلق، ا. ر.؛ خسروی، م.؛ مسعودیان، س. ا.؛ کیانی کیخسروی، م. ص. و حمیدیان‏پور، م. (1398). تغییرات زمانی و مکانی تابش زمین‏تاب ایران (دورة آماری 1367-1396)، مجلة ژئوفیزیک ایران، جلد سیزدهم، شمارة 2، صص 73-85.
کیانی کیخسروی، م. ص. و مسعودیان، س. ا. (1395). شناسایی وردش‏های مکانی روزهای برف‏پوشان در ایران‏زمین به کمک داده‏های دورسنجی، جغرافیا و مخاطرات محیطی، شمارة هفدهم، صص 69-85.
مصباح‏زاده، ط. و سلیمانی ساردو، ف. (1397). بررسی روند و توزیع مکانی پارامترهای اقلیمی دما و بارش در مناطق خشک و بیابانی (مطالعة موردی: جنوب استان کرمان)، پژوهش‏های محیط زیست، سال نهم، شمارة 81، صص  8-19.
میرعباسـی، ن. آ. و دین‏پژوه، ی. (1389). تحلیل روند تغییرات آبدهی رودخانه‏های شمال‏غرب ایران در سه دهة اخیر، نشریة آب و خاک، جلد بیست‏و‏چهارم، شمارة 4، صص 757-768.
 
Ahmadi, M.; Ahmadi, H. and Dadashiroudbari, A. A. (2018). Assessment of trends and spatial pattern seasonal and annual cloudiness in Iran. Journal of Natural Environmental Hazards7(15): 239-256.
Al-Salihi, A. M.; Rajab, J. M. and Salih, Z. Q. (2019). Satellite monitoring for Outgoing Longwave Radiation and Water Vapor during 2003-2016 in Iraq. In Journal of Physics: Conference Series,Vol. 1234, No. 1, P. 012009.
Amirrezaeieh, A. R.; Porhemmat, J. and Ahmadi, F. (2017). Investigation of precipitation and temperature trend across the north west of Iran in recent half of the century. Iranian Journal of Irrigation & Drainage, 10(6): 797-809.
Bolyani, Y. and Hakimdost, S. Y. (2014). The principles of spatial data analysis. Tehran: Azadpeyma, PP. 65-66.
Chu, P. S. and Wang, J. B. (1997). Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. Journal of Climate, 10(4): 636-646.
Crowley, T.J. and North, G.R. (1991) Paleoclimatology. Oxford University Press, New York.
Darand, M.; Pazhooh, F. and Saligheh, M. (2019). Trend analysis of tropospheric specific humidity over Iran during 1979-2016. International Journal of Climatology, 39(10): 4058-4071.
Ebrahimi, H. and Kardavani, P. (2014). Recognitionthe Climate Change in International anzali wetlandUsing Mann-Kendall test. Journal of Wetland Ecobiology, 6(3): 59-72.
Ghasabfeiz, M. and Eslami, H. (2017). Variations Trend Evaluation of Rainfall Using Mann-Kendall and Linear Regression in Khuzestan Province. PP. 113-121.
Gocic, M. and Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, No. 100, PP. 172-182.
Hatzidimitriou, D.; Vardavas, I.; Pavlakis, K. G.; Hatzianastassiou, N.; Matsoukas, C. and  Drakakis, E. (2004). On the decadal increase in the tropical mean outgoing longwave radiation for the period 1984-2000. Atmospheric Chemistry and Physics, 4(5): 1419-1425.
Hejazizadeh, Z.; Rahimi, A.; Toulabi Nejad, M. and  Bosak, A. (2017). Modeling of spatio-temporal of albedo over Iran. Journal of Applied researches in Geographical Sciences, 17(47): 1-17.
Huang, Y. and Ramaswamy, V. (2009). Evolution and trend of the outgoing longwave radiation spectrum. Journal of Climate, 22(17): 4637-4651.
Jin, Z.; Zhang, Y.; Del Genio, A.; Schmidt, G. and Kelley, M. (2019). Cloud scattering impact on thermal radiative transfer and global longwave radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 239, 106669.
Kaviani, M. (2009). Microclimatology. Tehran: Samt Publication.
Kaviani, M. and Alijani, B. (2000). The Foundation of Climatology (9th ed.), Tehran: Samt Publication, PP. 94-99.
Kefayat Motlagh, O. R. and Khosravi, M. (2018). The Tempo-Spatial Variations of Outgoing Longwave Radiation (OLR) in Iran. The Second National Conference on Meteorology of Iran, Ferdowsi University of Mashhad. https://civilica.com/doc/781128/.
Kefayat Motlagh, O. R.; Khosravi, M. and Masoodian, S. A. (2019). Analyzing Long-Term average of outgoing longwave radiation over Iran using remote sensing data. Scientific-Research Quarterly of Geographical Data (SEPEHR), 28(109): 199-209.
Kefayat Motlagh, O. R.; Khosravi, M.; Masoodian, A.; Kiani, M. S. and Hamidian Pour, M. (2019). The Tempo-Spatial Variations of Outgoing Longwave Radiation (OLR) in Iran (1988-2017). Iranian Journal of Geophysics, 13(2): 73-85.
Keikhosravi, K. M. S. and Masoodian, S. A. (2016). Identification of spatial variations of snow-covered days over Iran based on remote sensing data. Geograhy and Environmental Hazards5(17): 23-27. 
Liebmann, B. and Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6): 1275-1277.
Lim, E. S.; Wong, C. J.; Abdullah, K. and Poon, W. K. (2011). Relationship between outgoing longwave radiation and rainfall in South East Asia by using NOAA and TRMM satellite. In 2011 IEEE Colloquium on Humanities, Science and Engineering. PP. 785-790.
Mann, H.B. (1945). Nonparametric tests against trend, Econometrica, No. 13, PP. 245-259.
Mesbahzadeh, T. and Soleimani Sardoo, F. (2019). Investigation of trend and spatial distribution of climatic parameters including temperature and precipitation in arid and desert regions (Case study: Southern of Kerman province). Environmental Researches, 9(18): 89-100.
Mirabbasi, N. A. and Dinpazhouh, Y. (2010). Trend analysis of streamflow across the North West of Iran in recent three decades. Journal of Water and Soil,  24(4): 768-757.
Mordvin, E. Y.; Lagutin, A. A.; Volkov, N. V. and Makushev, K. M. (2019). Outgoing longwave radiation in Western Siberia region for the period 2003-2018 as observed by AIRS/Aqua. In 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (Vol. 11208, p. 112080L). International Society for Optics and Photonics.
Nelsen, R.B. (2001). Kendall Tau metric, in Haezewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104.
Peterson, C. A.; Chen, X.; Yue, Q. and  Huang, X. (2019). The spectral dimension of Arctic outgoing longwave radiation and greenhouse efficiency trends from 2003 to 2016. Journal of Geophysical Research: Atmospheres, 124(15): 8467-8480.
Prasad, K.P. and Bansod, S.D. (2000). Interannual Variations of Outgoing Longwave Radiation and Indian Summer Monsoon Rainfall. International Journal of climatology. No. 20.
Rahmani kam, A. (2015). Soil moisture routing using remote sensing products. Master Thesis in Civil Engineering. Supervisor, Saeed Golian. Faculty of Civil Engineering, University of Shahrood.
Raispour, K. and Razmi, R. (2020). Estimation of Cloud Fraction in the Atmosphere of Iran Using Multi-angle Imaging SpectroRadiometer (MISR). Iran-Water Resources Research, 16(3): 257-271.
Rasouli, A. A.; Jahanbakhsh, S. and Ghasemi, A. R. (2013). Investigation of Spatial and Temporal Variations of Cloud Cover in Iran.Geographical Reserches, Vol. 28, PP. 85-102.
Rechtman, T. (2018). Climate Modeling, Outgoing Longwave Radiation, and Tropical Cyclone Forecasting.
Rostamzadeh, H.; Rasouli, A.; Wazifedoust, M. and  Maleki, N. (2020). Evaluation and analysis of the role of the physical properties of the cloud in the probable rainfall amount using satellite data MSG (Case study area: West of Iran). Geography and Planning, 24(72): 225-245.
Sarie Sarraf, B.; Jalali Ansaroodi, T. and Sarafrouzeh, F. (2016). The effects of global warming on the climate of cities located in the Urmia Lake Basin. Journal of Urban Ecology Researches, 6(12): 33-48.
Schreck, C. J.; Lee, H. T. and  Knapp, K. R. (2018). HIRS outgoing longwave radiation-Daily climate data record: Application toward identifying tropical subseasonal variability. Remote Sensing, 10(9): 13-25.
Sen, P.K. (1968). Estimates of the regression coefficients based on Kendall’s tau. Journal of the American Statistical Association, No. 63, PP. 1379-1389.
Serrano, A.; Mateos, V.L. and Garcia, J.A. (1999). Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921-1995. Physics Chem. Earth (B), 24(1-2): 85-90.
Shen, Z.; Shi, J. and Lei, Y. (2017). Comparison of the long-range climate memory in outgoing longwave radiation over the Tibetan Plateau and the Indian Monsoon Region. Advances in Meteorology.
Whitburn, S.; Clarisse, L.; Delcloo, A.; Dewitte, S.; Bouillon, M.; George, M. ... and Clerbaux, C. (2021). Trends in spectrally resolved OLR from 10 years of IASI measurements. In EGU General Assembly Conference Abstracts (pp. EGU21-11304).
Xie, P. and Arkin, P. A. (1998). Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. Journal of Climate, 11(2): 137-164.
Zhang, L.; Rechtman, T.; Karnauskas, K. B.; Li, L.; Donnelly, J. P. and Kossin, J. P. (2017). Longwave emission trends over Africa and implications for Atlantic hurricanes. Geophysical Research Letters, 44(17): 9075-9083.