Investigation of Wind Chills changes in Zarrineh plain during the last three decades using Man-Kendall method

Document Type : Full length article


Associate Professor of Geography, Payame Noor University, PO Box 4697-19395, Tehran, IRAN,


Extended abstract


The effect of wind cooling in combination with temperature, which is expressed as a special feeling, is called Wind Chill, and the Wind Chill index is used to show the effects of cold. Wind Chills Apart from their beneficial effects on agriculture, they, as one of the natural disasters of atmospheric damage, sometimes cause a lot of financial and even human losses. Since temperature, precipitation and wind are the main elements of climate formation in any region, changes in their behavior can change the climate structure of any region. Therefore, the study of the past trends and behaviors of these climatic elements in the form of various indicators and scales of time and space, is very important and has been a large part of climate research. Researchers' past research shows that temperatures and changes are noticeable in many parts of the world. A review of these valuable sources shows that, so far, many efforts have been made with different approaches and perspectives on the quantitative and qualitative status of temperature and wind speed and related indicators. But what is certain is that no scientific and comprehensive study has been done in Kurdistan province regarding Wind Chills in Zarrineh Obato high plain. Therefore, conducting this study is a special necessity and can be a small step and a starting point to study and explain the specific environmental phenomena of this geographical area in the cold period of the year. One of the questions that arises is whether the behavior of Wind Chills in the Zarrineh Obato Plain has changed over the last three decades.

Research objectives

The main purpose of this study is to study climatic elements and changes in atmospheric phenomena, especially wind chills indexing and their classification in order to study and model the past behavior of Wind Chills during the last three decades using Mann-Kendall graphical statistical method and polynomial regression. To help decision-makers manage and reduce the effects of wind chills.

Research Methods

In order to investigate the past behavior of Wind Chills in Zarrineh Obato plain, after collecting and summarizing daily data on temperature and wind speed of stations around the plain during the statistical period of 32 years (1989-2020), the status of data in terms of quantity and quality control The normality and homogeneity of the data were assessed using the Run Test. Then, according to the latest model of the Canadian Meteorological Organization, the Wind Chill index was defined by establishing temperature conditions of at least 2 degrees Celsius and wind speeds above 4.8 meters per second on a five-point Likert scale. After that, the frequency and intensity of wind chills were calculated and used as the basis for descriptive statistics analysis in SPSS and Excel software. Then, to identify the linear and nonlinear behavior and fit the trend line and calculate its slope, polynomial nonlinear polynomial regression was used based on the least squares size method. In addition, Man-Kendall test and T statistic of Man-Kendall were used to investigate the possible deviation and to determine the type and time of change in the time series of mean temperature, wind speed and wind chill index for the station closest to Zarrineh plain.


The results showed that in February, Wind Chills first (zero to -9 C˚) and second (-10 to -27 C˚) had the highest frequency of occurrence, and although based on the fit of the linear regression equation, The frequency of Wind Chills has been increasing overall, but unlike the second floor Wind Chills, this upward trend has been more related to the frequency of first floor Wind Chills and the significant increase in their number. The frequency of days with Wind Chill on the first floor was about 64% of the total Wind Chills and the frequency of Wind Chills on the second floor was about 36%. In the middle of the study period, there was a clear discrepancy and inconsistency between the frequencies of Wind Chills of the mentioned classes. This means that, in the years when the incidence of Wind Chills increased, the frequency of Wind Chills decreased relatively severely, both in number and severity. Although due to the mountainous nature of Kurdistan region and statistical limitations and lack of automated meteorological stations in the region, it is not easy and reliable to talk about climate and its changes, but the results of Mann-Kendall model analysis on the frequency of wind chills and The average annual temperature intensity of Wind Chills in the plain showed that, so far, there have been several jumps and the beginning of sudden changes in the frequency of Wind Chills during the 1990's. However, since the intersections of the two components U and U' related to the Man-Kendall statistical-graphic diagram within each other within the critical ±1.96 range intersected, so no significant jump was proven, but there are clear signs and signs of a decreasing trend. Wind chills are common in the time series, especially in the two decades of 2010-2020. The changes of the mentioned components for the annual average temperature of Wind Chills of different classes with the frequency of their occurrence have been completely different and vice versa. Thus, although the average temperature of Wind Chills has decreased in the two decades of 2000-2010, but as can be seen from the U' component diagram, the increasing annual average temperature of Wind Chills for the first and second temperature classes and the average temperature of total Wind Chills during the 2010's Shows an upward trend. This means that the average temperature of Wind Chills in the Zarrineh Obatovo Plain has increased significantly since the early 2020's. This issue was also emphasized by the field study and the statements of the villagers in the study area. The result of this research, with a slight difference in the study area, is consistent with the valuable work of many researchers on the beginning of the increasing trend of temperature in different regions of Iran during the last two decades.

In general, the winter temperature in the region has increased, and as a result, both the coldness of Wind Chills and the frequency of their occurrence have changed. Thus, the cooling temperature of Wind Chills has been decreasing and in 1990 it has experienced a significant jump. Since the mid-1990's, the annual frequency of the first floor of Wind Chills has been declining, showing several significant jumps, and has lost its long-term normal state.


Main Subjects

برنا، ر. (1398). مطالعة شاخص‏های زیست‏اقلیمی مؤثر بر آسایش انسان، فصل‏نامة آمایش محیط، شمارة 45، صص 95-117.
پروین، ن. (1390). الگوهای گردشی مؤثر بر وقوع یخبندان‏های دیررس بهارة استان کردستان»، فصل‏نامة تحقیقات جغرافیایی، شمارة 2، صص 17-37.
حجازی‏زاده، ز. و پروین، ن. (1388). بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر»، پژوهش‏های بوم‏شناسی شهری، صص 43-56.
حیدری، ح. و سعیدآبادی، ر. (1386). ناحیه‏بندی سوزباد در شمال غرب و غرب ایران، پژوهش‏های جغرافیایی، شمارة 62، صص 93-107.
خوشدل، ن.؛ رضایی، پ.؛ متولی، ص. و جانباز قبادی، غ. (1399). تبیین اقلیم گردشگری شرق استان گیلان و طبقه‏بندی مکانی آن، مطالعات برنامه‏ریزی سکونتگاه‏های انسانی، شمارة 4، صص 1119-1136.
درگاهیان، ف. و میرزایی، ح. (1385). شاخص سوزباد به‏عنوان یک شاخص اقلیمی مؤثر بر راحتی انسان، نشریة نیوار، شمارة پیاپی۶۰-۶۱، صص 19-30.
ذوالفقاری، ح.؛ هاشمی، ر. و رادمهر، پ. (1389). تحلیلی بر نیازهای سرمایشی و گرمایشی در شمال غرب ایران، پژوهش‏های جغرافیای طبیعی، شمارة 70، صص 21-34.
رائین، پ. (1972). بوران ۱۳۵۰: شدیدترین بوران تاریخ معاصر ایران و جهان| شبکه هوا و فضا، روزنامة daily gazzete نیویورک، به تاریخ جمعه 22 بهمن ماه 1350.
رسولی، ع. و عزیززاده، م. (1385). مدل‏سازی مکانی پدیدة سرمایش بادی در شمال غرب کشور، فصل‏نامة تحقیقات جغرافیایی، شمارة 80، صص 30-50.
رمضانی‏پور، م. (1397). شناسایی پتانسیل‏های بوم‏‏- گردشگری پایدار شهری- منطقه‏ای شهرستان نوشهر بر اساس عوامل طبیعی- اقلیمی، فصل‏نامة جغرافیایی آمایش محیط، شمارة 40، صص 143-160.
رنجبر، س.؛ کمالی، غ.؛ عطائی، ه. و گندمکار، ا. (1395). تعیین شاخص سوزباد در ایران بر پایة داده‏های اقلیمی، فصل‏نامة جغرافیای طبیعی، شمارة 33، صص 67-81.
شهاب‏فر، ع.؛ محمدنیاقرائی، ش. و جاودانی خلیفه، ن. (1382). بررسی تغیرات زمانی روزهای یخبندان در مشهد، دانشگاه اصفهان، سومین کنفرانس منطقه ای و اولین کنفرانس ملی تغییر اقلیم، صص 74-81.
فتاحی کیاسری، ا. و صالحی پاک، ت. (1388). تحلیل الگوهای سینوپتیکی یخ‏بندان‏های زمستانة ‏ایران، مجلة جغرافیا و توسعه، شمارة 13، صص 127-136.
فتوحی، ص.؛ زهرایی، ا. و ابراهیمی‏تبار، ا. (1392). ارزیابی شرایط اقلیم گردشگری استان‏های شمالی حاشیة دریای خزر، با استفاده از TCI و تجزیه و تحلیل خوشه‏ای در سیستم اطلاعات جغرافیایی، فصل‏نامة فضای جغرافیایی، شمارة 42، صص 169-189.
فلاح قالهری، غ.؛ میوانه، ف. و شاکری، ف. (1394). ارزیابی آسایش حرارتی انسان با استفاده از شاخص جهانی اقلیم حرارتی، مطالعة موردی: استان کردستان، فصل‏نامة سلامت و محیط زیست، شمارة 3، صص 367-378.
مسعودیان، س.ا. (1383). بررسی روند دمای ایران در نیم سدة گذشته، جغرافیا و توسعه، 3، صص 89-106.
میرزاخانی، آ. (1378). تجزیه و تحلیل ریسک سیل و آثار زیان‏بار آن در ایران، فصل‏نامة بیمه، 10، صص 8-12.
Bluestein,  M. and Zecher, J. (2002). A New Approach to an Accurate Wind Chill Factor, Bulletin of the American Meteorological Society, 80(9): 1893-1900.
Bureau of Meteorology (2010). The Apparent Temperature (AT) - Heat Index, Australia.
Environment Canada (2001). Canada’s New Wind Chill Index,
Grieser, J.; Tromel, S. and Schonwiese, C.D. (2002). Statistical time series decomposition into significant components and application to European temperature, Theoretical and Applied Climatology, 71(3): 171-183.
Ha, J.K. and Ha, E. (2006). Climatic Change and Inter annual Fluctuation in the Long-term Record of Monthly Precipitation for Seoul, Int. J. Climatol, 26, 607-618.
Haylock, M. and Nicholls, N. (2000). Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910-1998, International Journal of Climatology, 20, 1533-1541.
Koop, L.K. and Tadi, P. (2021). Physiology, Heat Loss, StatPearls Publishing LLC.
National Weather Service (USA) (2001). Wind Chill temperature index,
NWS Wind–Chill Temperature Index Wind Chill Charts (2002). Available at:
Osczevski, R. and Bluestein, M. (2005). The new wind chill equivalent temperature chartBulletin of the American Meteorological Society, 86 (10): 1453-1458.
Piirsalu, P.; Tanel, K.; Nutt, Irje; Giovanni, M. and Arney, D. (2020). The effect of climate parameters on sheep preferences for outdoors or indoors at low ambient temperatures, Animals, Vol. 10, No. 1029, PP. 1-11.
Roshan, G.; Gafari, M.; Shakoor, A. and Mohammad-Nejad, V. (2010). Studying Wind Chill Index as a Climatic Index Effective on the Health of Athletes and Tourists Interested in Winter Sports, Asian Journal of Sports Medicine, Vol. 1, No. 2, PP. 108-116.
Shen, S. (2003). Global warming science and policy: progress 2002-2003, Proceeding of 14th Global warming International conference and expo (24-30 may, Boston. USA), PP. 7-18.
Shitzer, A. (2018). Estimation of Wind Chill Equivalent Temperatures (WCETs), Book Editor(s): Devashish Shrivastava.
Sueyers, R. (1990). On the Statistical Analysis of Series of Observation, WMO, 415, PP. 2-15.
Teodoreanu, E. (2015). Index Bioclimatic "Wind-Chill, PESD, Vol. 9, No. 1, PP. 237-242.
Ting, C.C.; Lee, Jing-N. and Shen, Chun-Hong, (2008). Development of a wind forced chiller and its efficiency analysis, Applied Energy, No. 85, PP. 1190-1197.
Toros, H.; Deniz, A.; Aylan, L.S.; Sen, O. and Balog˘lu, M. (2005). Spatial variabilit y of chilling temperature in Turkey and its effect on human comfort, Meteorol. Atmos. Phys, 88, PP. 107-118.
Turkes, M. (1999). Vulnerability of Turkey to desertification with respect to precipitation and aridity condition, Trkish Journal of Engineering and Environmental Science, 23, PP. 363-380.
Turkes, M.; Sumer, U.M. and Demir, I. (2002). Re- Evaluation of Trends and Changes in mean. Maximum and Minimum Temperatures of Turkey for the Period 1929-1999, Int. J. Climatol, 22, PP. 947-977.
Volume 53, Issue 4
February 2022
Pages 557-572
  • Receive Date: 21 August 2021
  • Revise Date: 20 November 2021
  • Accept Date: 01 December 2021
  • First Publish Date: 01 December 2021