Sensitivity of geomorphological facies using wind tunnel Case study: Gonabad TownShip

Document Type : Full length article

Authors

1 PhD of Geomorphology, Hakim Sabzevari University, Sabzevar, Iran

2 Professor Department of Natural Geography, Hakim Sabzevari University, Sabzevar, Iran

3 Associate Professor Department of Natural Geography, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Extended Abstract
Introduction
Wind is one of the important causes of erosion in arid and semi-arid regions, which due to the limited vegetation in these areas, is able to move portable particles and results in wind erosion. Erosion defines as the transfer of discontinuous sediment from the earth's surface by water or wind. Wind erosion is a process that occurs because of increased speed and due to wind turbulence on a surface free of cover and as one of the main factors of land degradation and limiting soil fertility has created serious problems in many parts of the world, including Iran. Therefore, there is a serious problem against sustainable production and management of agricultural lands. The process of wind erosion destroys the soil and makes it inaccessible.
In arid and desert areas, soil erosion and particle transport are more affected by wind than other factors. Wind erosion and deposition of materials by wind or wind erosion occurs in more than one third of the land surface. Soil displacement and its destruction in such areas is very important; Due to the climatic conditions of these areas, soil is formed late. Wind erosion first picks up loose soil without vegetation and during the course of the attack, the impact of moving particles by the wind intensifies the erosion and increases the damage, and finally leaves the transported material in the form of sand dunes.
 
Methodology
In this study, the physical-laboratory method of wind tunnel was used to estimate the amount of erosion and sedimentation of geomorphological facies of Gonabad city compared to wind erosion. Firstly, the landform units and their types were distinguished and after identifying the facies, one square meter was taken from the surface soil and the samples were transferred to the wind tunnel aerodynamics laboratory of Hakim Sabzevari University for analysis. Then, in order to measure the amount of sedimentation of lands through wind erosion measuring device, first the erosion threshold for each sample was determined and the sediments were exposed to wind erosion for ten minutes and its erodibility was determined. To measure the wind erosion threshold, initially the tray was filled with sediment and weighed, and the sediment sample was placed inside the wind tunnel and the wind tunnel was lit at a base speed of 4 meters per second. Then the speed was increased to reach the wind erosion threshold. Wind erosion threshold is the speed at which the first sediments begin to move. At the wind tunnel threshold speed remained on for ten minutes and the sediments were exposed to wind. After this time, re-sedimentation of weight and after calculating the percentage of pebbles in each facies, the amount of winding was estimated. Three samples of each facies were placed in the wind tunnel and the average velocity of the winding threshold was considered as the wind erosion threshold of the facies.
 
Results and discussion
The results of measuring the amount of eroded soil of geomorphological facies were estimated for the erosion threshold speed of each facies. Wind erosion threshold varies from 6 m / s in sand dunes to 15 m / s in low and high plains and relatively high water erosion and new deposits. Wind gauge was measured between 20 g / m2 in earthen hills with low and high erosion and moderate erosion up to 350 g / min in 10 minutes in sand dunes.
Examination of wind erosion threshold map in different facies and its adaptation to sand transport flow direction show that in sand dunes facies with threshold velocity of 6 m / s dominant direction of northwest flow was consequently threatening in north part It is in the way of communication. However, part of this facies is located in the north of Gonabad, which can be hazardous due to the location of industrial settlements and the establishment of industries for moving sand.
 
Conclusion
Lowland plains with relatively high water erosion and new deposits with a threshold speed of 15 meters per second are resistant to wind erosion and sand dunes with a threshold speed of 6 meters per second (12 knots) have the most sensitive facies and the highest amount erosion (350 g / m2 in ten minutes). After that, plains with gentle slopes without elevations and facies of earthen hills with elevations and thresholds with a threshold speed of 10 meters per second were estimated from areas sensitive to wind erosion in the region. The adaptation of the sand dunes to the speed of different thresholds showed that the city of Gonabad is prone to wind erosion by being located in the sensitive facies of a plain with a gentle slope and without elevation and the direction of the northern flow of sand in this facade. The results of calculating the wind erosion threshold in the study area showed a threshold speed of 6-15 m / s in different facies. The most sensitive facies are sand dunes (6 m / s) followed by plains facies with gentle slopes without elevation and elevation of earth hills with elevation and wind erosion (threshold speed 10 m / s). Considering that the city of Gonabad and Beidokht, as the two most important population centers, are located in the facies of plains with gentle slopes and without slopes and heights, special attention should be paid to this facies for stabilization. Also, sand dunes cover a large part of the city and in terms of location, are located on the main road north to south of the country (Mashhad-Zahedan) and also has the lowest erosion threshold and the highest wind volume. Management of these lands and planning to stabilize this facies seems to be necessary. An overview of the wind erosion susceptibility map showed that the northern areas of the city have more potential than the southern areas. As moving toward south, wind erosion decreases, and the topographic factor plays an important role. Due to the fact that the study area is one of the arid regions in terms of climate, so the unfavorable climate has prevented the establishment of vegetation and has intensified wind erosion in the region. It is suggested that in areas where the soil surface has hardened (floodplain facies and clay soils) and gravelly lands (sandy plains) the most important action to prevent wind erosion is to maintain this cover and prevent from damage cover.

Keywords

Main Subjects


  1. ابراهیمی درچه، خ.؛ جنت رستمی، م.؛ جلالی، م. و جعفریان، آ. (1389). برآورد فرسایش بادی با کمک روش E.A، همایش ملی علوم و مهندسی آبخیزداری گروه مهندسی آبخیزداری دانشکدة منابع طبیعی، 8 و 9 اردیبهشت‏ماه 1389، صص 1-8.
  2. اختصاصی، م. ر. (1383). بررسی مورفومتری و مورفودینامیک رخساره های فرسایش بادی در دشت یزد، رساله دکتری دانشگاه تهران.
  3. اسدزاده، ف.؛ خدادادی، م. و احسان ملاحت، ا. (۱۳۹۶). پیش‏بینی حساسیت به فرسایش نهشته‏های بادی با استفاده از مدل‏های توزیع اندازة ذرات در بخشی از ساحل غربی دریاچة ارومیه، فصل‏نامة تحقیقات مرتع و بیابان ایران، شمارة 1، صص 126-141.
  4. امین، پ. و تقی‏زاده مهرجردی، ر. (1395). بررسی پتانسیل فرسایش‏پذیری خاک در مناطق خشک و فراخشک مرکزی ایران (مطالعة موردی: دشت یزد- اردکان)، پژوهش‏های ژئومورفولوژی کمی، سال 5، شمارة 2، صص 20-35.
  5. امین، پ. و عظیم‏زاده، ح. ر. (1394). بررسی تأثیر سنگ‏فرش بیابانی بر روی سرعت آستانة فرسایش بادی و فرسایش‏پذیری بادی خاک (مطالعة موردی: حوضة ابراهیم‏آباد مهریز یزد)، پژوهش‏های ژئومورفولوژی کمی، سال 4، شمارة 2، صص 90-104.
  6. ایازی، ز.؛ مصباح‏زاده، ط.؛ احمدی، ح. و مشهدی، ن. (1395). بررسی توان رسوب‏سنجی در رخساره‏های ژئومورفولوژی با استفاده از تونل باد و مدل اریفر (مطالعة موردی: آران کاشان)، نشریة مدیریت بیابان، شمارة 8، صص 70-83.
  7. ایلدرمی، ع. و مرادی، م. (1396). ارزیابی شدت فرسایش بادی با بهره‏گیری از مدل E.A (بررسی موردی: دشت قهاوند همدان)، نشریة جغرافیا و برنامه‏ریزی، سال 21، شمارة 60، صص 35-52.
  8. حنیفه‏پور، م. و مشهدی، ن. (1392). بررسی میزان مقاومت اراضی کشاورزی به فرسایش بادی در جنوب شرقی دامغان، فصل‏نامة جغرافیا و مطالعات محیطی، سال 2، شمارة 6، صص 100-110.
  9. حیدری‏نسب، م.؛ کرم، ا.؛ نگارش، ح. و پهلوان‏روی، ا. (1398). تحلیل مورفومتریک تپه‏های ماسه‏ای و سرعت جابه‏جایی آن‏ها در دشت سیستان، کاوش‏های جغرافیایی مناطق بیابانی، سال 7، شمارة 1، صص 149-164.
  10. جعفری شالکوهی، ع.؛ وفاییان، م.؛ روشن‏ضمیر، م. ع. و میرمحمدصادقی، م. (1394). ارزیابی عوامل مؤثر بر تثبیت خاک‏های ریزدانه در برابر باد به‏منظور جلوگیری از پیدایش ریزگردها، نشریة علوم آب و خاک، سال 19، شمارة 73، صص 273-285.
  11. رفاهی، ح. ق. (1383). فرسایش بادی و کنترل آن، تهران: انتشارات دانشگاه تهران.
  12. زنگنه تبار، س.؛ مقصودی، م.؛ منبری، ف. و حسینی، م. (1400). تحلیل فرسایندگی باد و پتانسیل حمل ماسه‏های روان واقع در قلمرو بیابان لوت، پژوهش‏های فرسایش محیطی، ش 41، صص 1-19.
  13. سعدالدین، ا.؛ اخضری، د. و نورا، ن. (1389). پیش‏بینی اثرات سناریوهای مدیریت پوشش گیاهی بر خطر فرسایش بادی (مطالعة موردی جنوب دشت ورامین)، مجلة پژوهش‏های حفاطت آب و خاک، جلد 17، شمارة 1، صص 63-80.
  14. سلطانی گرد فرامرزی، س. و مروتی، م. (1400). مهم‏ترین ویژگی‏های فیزیکی، شیمیایی، و کانی‏شناسی گرد و غبار اتمسفری شهر یزد در مرکز ایران، فصل‏نامة پژوهش‏های جغرافیای طبیعی، دورة 53، شمارة 1، صص. 21-36.
  15. شهابی‏نژاد، ن.؛ محمودآبادی، م.؛ جلالیان، ا. و چاوشی، ا. (1399). تأثیرگذاری ویژگی‏های خاک بر شدت فرسایش بادی در مناطق مختلف استان کرمان، نشریة علوم آب و خاک، شمارة 3، صص 209-222.
  16. صارمی نائینی، م. ع. (1395). برآورد فراوانی سرعت و جهت بادهای فرساینده و مولد طوفان‏های گردوغبار و ریزگردها در سطح استان یزد با استفاده از تحلیل گلباد، گل‏طوفان، و گلماسه، نشریة مدیریت بیابان، شمارة 8، صص 96-106.
  17. صارمی نائینی، م. ع. (1400). ارزیابی اثرات تغییر کاربری اراضی محدودۀ شهرهای میبد و اردکان بر شدت فرسایش بادی، مجلة منابع طبیعی ایران، دورة 74، شمارة 1، صص. 121-135.
  18. ظهرابی، ص.؛ خسروی، ح.؛ مصباح‏زاده، ط.؛ جعفری، م. و دستورانی، م. (1398). بررسی سرعت آستانة فرسایش بادی و تأثیرپذیری آن از خصوصیات خاک در کانون تولید گرد و غبار استان البرز، فصل‏نامة مطالعات جغرافیایی مناطق خشک، دورة 10، شمارة 38، صص 1-13.
  19. قائمی‏نیا، ع. م. (1394). معرفی و ارزیابی قابلیت‏ها و محدودیت‏های تلة رسوب‏گیر فرسایش بادی EDST، فصل‏نامة تحقیقات مرتع و بیابان ایران، جلد 22، شمارة 2، صص 356-372.
  20. محمدخان، ش. و کشفی، ف. س. (1394). جهات انتقال ماسه‏های بادی منطقة اردستان از طریق مقایسة زمانی مورفومتری تپه‏های ماسه‏ای و ویژگی‏های باد، پژوهش‏های ژئومورفولوژی کمی، سال 4، شمارة 1، صص 59-74.
  21. محمدیان بهبهانی، ع. و بوعلی، ع. (1399). ارزیابی مقایسه‏ای مدل‏سازی شدت فرسایش بادی با استفاده از دو مدل WEHI و IRIFR به‏منظور ارائة برنامة مدیریت دشت سگزی اصفهان، نشریة پژوهش‏های حفاظت آب و خاک، شمارة 4، صص 129-147.
  22. موحدان، م.؛ عباسی، ن. و کرامتی طرقی، م. (1392). بررسی آزمایشگاهی اثر پلی وینیل استات بر فرسایش بادی خاک‏های مختلف در برابر ماسه، مجلة پژوهش‏های حفاطت آب و خاک، جلد 20، شمارة 1، صص 55-76.
  23. نورزاده حداد، م. و لندی، ا. (1397). مطالعة کانی‏شناسی و حساسیت منابع تولید ریزگرد به پوشش سنگریزه‏ای در سطح خاک، مطالعة موردی اراضی غربی استان خوزستان، فصل‏نامة فضای جغرافیایی اهر، سال 18، شمارة 64، صص 61-74.
  24. Afkhami, H.; Riahi, S.; Ehdaie, A. and Rosta, H. (2014). Evaluation of water and wind erosion using IRIFR and MPSIAC models (Case study: Ganj Castle Basin), Iranian Journal of Applied Geomorphology, Year 2, Issue 3, pp. 90-108.
  25. Amin, P. and Azimzadeh, H. R. (2015). The effect of desert pavement on soil wind erodibility and wind erosion threshold velocity (Case Study: Ebrahimabad basin of Mehriz (Yazd). Quantitative Geomorphological Research, 4(2): 90-104.
  26. Amin, P. and Taghizadeh Mehrjerdi, R. (2015). Investigation of soil erodibility potential in arid and arid regions of central Iran (Case study: Yazd-Ardakan plain), Quantitative Geomorphological Research, Fifth Year, No. 2, pp. 20-35.
  27. Asadzadeh, F.; Khodadadi, M. and Ehsan Malahat, A. (2017). Predicting Sensitivity to Erosion of Wind Deposits Using Particle Size Distribution Models in a Part of the West Coast of Lake Urmia, Iranian Journal of Rangeland and Desert Research, No. 1, pp. 126-141.
  28. Ayazi, Z.; Mesbahzadeh, I.; Ahmadi, H. and Mashhadi, N. (2016). Investigation of sedimentometric power in geomorphological facies using wind tunnel and Orifar model (Case study: Aran Kashan), Journal of Desert Management, No. 8, pp. 70-83.
  29. Ebrahimi Drche, Kh.; Jannat Rostami, M.; Jalali, M. and Jafarian, A. (2010). Estimation of wind erosion using IRIFR.E.A method, National Conference on Watershed Management Science and Engineering, Department of Watershed Engineering, Faculty of Natural Resources, pp. 1-8.
  30. Ekhtesasi, M. R;(2005). Morphometric and morphodynamic study of wind erosion facies in Yazd plain, PhD thesis, University of Tehran.
  31. Ekhtesasi, M. R. MA. and Saremi Naeini, A. (2005). Designing of Sandrose graph software, the processor of sand drift potential and sediment transport by wind. In The first wind erosion conference.
  32. Ekhtesasi, M.; Ahmadi, H.; Kalili, A.; Saremi Naeini, M. and Rajabi, M. (2006). An Application Of wind rose, storm rose,and sand rose in the analysis of wind erosion and determining the direction of moving sands(Yazd-Ardakan basin) Iranian journal of natural resources, 59(3): 533-541. https://www.sid.ir/en/journal/ViewPaper.aspx?id=128243.
  33. Fister, W. and Ries, J. B. (2009). Wind erosion in the central Ebro Basin under changing land use management. Field experiments with a portable wind tunnel, Journal of Arid Environments, V73. pp 996-1004.
  34. Fryberger, S. G. and Dean, G. (1979). Dune forms and wind regimes. In: A Study of Global Sand Seas. E. D. Mckee (Ed). Geological Survey Professional, Paper 1052, pp. 137-169.
  35. Ghaeminia, AM. (2015). Introduction and evaluation of the capabilities and limitations of EDST wind erosion sediment trap, Iranian Rangeland and Desert Research Quarterly, Vol. 22, No. 2, pp. 356-372.
  36. Hangen, L. )1976.( A wind erotion Predication System to meet user needs. Soil Water conserve Journal, 46(2): 111-206.
  37. Hanifehpour, M. and Mashhadi, N. (2013). Study of resistance of agricultural lands to wind erosion in the southeast of Damghan, Quarterly Journal of Geography and Environmental Studies, Second Year, No. 6, pp. 100-110.
  38. Heidari Nasab, M.; Karam, A.; Negarash, H. and Pahlavanrooi, A. (2019). Morphometric analysis of sand dunes and their displacement speed in Sistan plain, Geographical excavations of desert areas, seventh year, number one, pp. 149-164.
  39. Ildermi, A. and Moradi, M. (2017). Evaluation of wind erosion intensity using IRIF.E.A model (Case study: Ghahavand plain of Hamadan), Journal of Geography and Planning, Vol. 21, No. 60, pp. 35-52.
  40. Jafari Shalkoohi, AS.; Vafaeian, M.; Roshan Zamir, M. and Mir Mohammad Sadeghi, M. (2015). Evaluation of effective factors on stabilization of fine-grained soils against wind in order to prevent the formation of fine dust, Journal of Soil and Water Sciences, Year 19, No. 73, pp. 273-285.
  41. Kusumandari, A.( 2014). Soil erodibility of several types of green open space areas in Yogyakarta city, Indonesia, The 4th International Conference on Sustainable Future for Human Security, Procedia Enviromental Sciences.
  42. Mohammad Khan, Sh. and Kashfi, F.S. (2015). Directions of wind sand transfer in Ardestan region through temporal comparison of morphometry of sand dunes and wind characteristics, Quantitative Geomorphological Research, Fourth Year, No. 1, pp. 59-74.
  43. Mohammadian Behbahani, A. and Boali, A. (2020). Comparative evaluation of wind erosion intensity modeling using two models WEHI and IRIFR in order to present the management program of Segzi plain of Isfahan, Journal of Soil and Water Conservation Research, No. 4, pp. 129-147.
  44. Movahedan, M.; Abbasi, N. and Keramati Torghi, M. (2013). Laboratory study of the effect of polyvinyl acetate on wind erosion of different soils against sand, Journal of Soil and Water Conservation Research, Vol. 20, No. 1, pp. 55-76.
  45. Noorzadeh Haddad, M. and Landi, A. (2018). Mineralogy study and sensitivity of fine dust production sources to gravel cover in the soil surface, a case study of western lands of Khuzestan province, Ahar Geographical Space Quarterly, Vol. 18, No. 64, pp. 61-74.
  46. Refahi, AH. (2004). Wind Erosion and its Control, University of Tehran Press.
  47. Saad al-Din, A.; Akhzari, D. and Nora, N. (2010). Predicting the Effects of Vegetation Management Scenarios on Wind Erosion Risk (Case Study South of Varamin Plain), Journal of Soil and Water Conservation Research, Vol. 17, No. 1, pp. 63-80.
  48. Saeddin, A.; Akhzari, D. and Noora, N. (2010). Prediction of the Effects of Vegetation Management on Wind Epidemic Risk (A Case Study of South of Varamin plain), Journal of Soil and Soil Conservation Studies, Vol. 17, No. 1, pp. 63-80.
  49. Saremi Naeini, M. A. (2017). Estimate the frequency of speed and direction of erosive winds and generating dust storms in Yazd province by using Windrose, Stormrose and Sandrose. Desert Management, 4(8): 96-106.
  50. Saremi Naeini, M. A. and Saremi Naeini, A. (2021). RosePlot: windrose generator software (Version 3.0) [software]. Snmsofts.
  51. Saremi Naeini, MA. (2021). Evaluation of the effects of land use change in Meybod and Ardakan cities on the intensity of wind erosion. Journal of Range and Watershed Managment, 74: 121-35. https://doi.org/10.22059/jrwm.2021.310687.1534.
  52. Shahabi Nejad, N.; Mahmoudabadi, M.; Jalalian, A. and Chavoshi, A. (2020). The effect of soil properties on the intensity of wind erosion in different regions of Kerman province, Journal of Soil and Water Sciences, No. 3, pp. 222-209.
  53. Sharratt, B.; Feng, G. and Wendling, L. (2007). Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia plateau. Earth Surface Processes and Landforms, 32(4): 621-630.
  54. Soltani Gerd Faramarzi, S. and Morvati, M. (1400). The Most Important Physical, Chemical, and Mineralogical Properties of Atmospheric Dust in Yazd, Central Iran, Quarterly Journal of Natural Geography Research, Vol. 53, No. 1, pp. 21-36.
  55. Tang, J. (2011). Influence of biological aggregating agents associated with microbial population on soil aggregate stability. Applied Soil Ecology, 47(3): 153-159.
  56. Webb, N. P.; Galloza, M. S.; Zobeck, T. M. and Herrick, J. E. (2016). Threshold wind velocity dynamics as a driver of aeolian sediment mass flux, Aeolian Research. V20. pp. 45-58.
  57. Zahrabi, P.; Khosravi, H.; Mesbahzadeh, I.; Jafari, M. and Dastrani, M. (2019). Investigation of wind erosion threshold and its impact on soil properties in the dust production center of Alborz province, Quarterly Journal of Geographical Studies Arid regions, Vol. 10, No. 38, pp. 1-13.
  58. Zanganeh Tabar, S.; Maghsoudi, M.; Manbari, F. and Hosseini, M. (1400). Analysis of wind erosion and the carrying potential of quicksand located in the Lut Desert, Environmental Erosion Research, Vol. 41, pp. 1-19.
  59. Zobeck, T. M. and Van Pelt, R. S. (2006). Wind-induced dust generation and transport mechanics on a bare agricultural field. Journal of hazardous materials, 132(1): 26-38.