Comparative evaluation of WLC, OWA, VIKOR, and MABAC multi-criteria decision-making methods in landslide risk zoning Case study: Givi-chay watershed of Ardabil province

Document Type : Full length article

Authors

1 Associate professor of Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran

2 PhD in Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Extended Abstract
 Introduction
Landslides are one of the most important geomorphological processes that affect the evolution of landscapes in mountainous areas, which in some cases also lead to catastrophic events (Hattanji and Moriwaki, 2009). In recent decades, due to the increasing trend of damages caused by natural disasters, especially landslides, the category of forecasting and preventing damages has been seriously discussed (Izadi and Entezari, 2013). Landslide risk zoning maps can provide an effective and efficient tool for planners and decision-makers to identify suitable zones for future development (Ghobadi Alamdari, 2019). The use of GIS and multi-criteria decision-making methods, with an integrated approach, can accelerate the planning process in the diagnosis of critical and emergency cases and lead to the issuance of appropriate results.
Givi Chay watershed with an area of 1814 square kilometers is one of the sub-basins of Sefidroud, which is in the coordinates of 48 degrees and 4 minutes and 20 seconds to 48 degrees and 40 minutes and 12 seconds east longitude and 37 degrees and 26 minutes and 3 seconds. Up to 37 degrees and 55 minutes and 55 seconds north latitude, it is located in the south of Ardabil province and within the city of Khalkhal and Givi. This watershed is from the north to Qarasu watershed and the heights of Turka, Pileh, Chaleh Marz and, Gondab, from the west to Qarnaqo river catchment and from the east to Agh-e-Uler, Navroud and, Talesh mountain ranges and from the south to the basin The catchment area of the Ghezel Ozan River is limited. The minimum and maximum height of the Givi Chay watershed, are respectively; 873 and 3025 meters. Geologically, the study area is located in the West Alborz-Azerbaijan tectonic zone.
 
Methodology
The present research is of applied type and its research method is analytical based on the combination of data analysis, GIS, and the use of multi-criteria analysis techniques. ENVI, Arc GIS, Idrisi, and Excel software have been used for image processing and data analysis. In this study, first the effective factors in Landslide (including slope, aspect, Elevation classes, lithology, land use, precipitation, distance from the communication road, distance from the waterway and distance from the fault), according to the natural and human conditions of the region were identified. In the next step, information layers related to each factor were prepared in the GIS environment. The information layers of curved lines, communication roads, and waterway networks were obtained by digitization from the topographic map of Givi and Khalkhal cities with a scale of 1: 50,000, and the slope and aspect layers were prepared using a digital elevation model. Information layers related to lithology (rock resistance) and faults, by digitization from the geological map of Givi, Khalkhal-Rezvanshahr, and Masouleh; Prepared at a scale of 1: 100,000. To extract the land use of the study area, first geometric and atmospheric corrections were made on the images using the Flaash method in Envi software. Then the classification was done by object-oriented method and nearest neighbor algorithm in Ecognition software, and the results obtained from the classification of uses in the present study, both in terms of individual uses and in terms of total accuracy and kappa statistics, are acceptable (greater than 85 Percent), in relation to the information produce. The precipitation map of the basin was drawn using meteorological and rainfall station data and the method of precipitation gradient equation (P: 0.11104H + 193.24). To prepare a landslide risk map, WLC, OWA, VIKOR, and MABAC multi-criteria decision algorithms, fuzzy standardization and cortical weighting method have been used. Landslide zoning maps have been evaluated using the relative performance detection curve (ROC).
 
Results and discussion
According to the output obtained by using the WLC method, 427.352 square kilometers of basin area is in the high-risk class and 599.237 square kilometers is in the high-risk class. According to the landslide hazard zoning map obtained from the OWA method, respectively; 284.262 and 670.628 square kilometers of the basin area are very high-risk and high-risk classes. According to the hazard map obtained from the VIKOR method, high-risk and high-risk classes, respectively, occupied 745.457 and 394.471 square kilometers of the basin area. Also, the results obtained using the MABAC method show coverage of 572.900 square kilometers of high-risk floor and 551.030 square kilometers of the high-risk floor of the basin area.
Results of output overlap of the studied models, with a scattering of landslide points; Showed that according to WLC, OWA, VIKOR, and MABAC multi-criteria decision algorithms, respectively, 37.84, 46.73, 59.46, and 48.65% of the slip points in the high-risk category and 37.84, 51.35, 24.33 and 35.14% of slip points are in a high-risk category. The matching of slippery surfaces and hazardous zones shows that at the output of all the studied algorithms, the areas in the high-risk, high-risk category have the largest area of ​​ landslide surfaces. In addition, in the low-risk classes introduced by the multi-criteria algorithms, a limited number of landslides are observed, and in the low-risk classes, no distribution of landslides occurs in the basin. Therefore, it can be concluded that due to the distribution of landslides in each of the hazard classes, all the studied algorithms and especially the Vikor method by covering 22 landslides in a very high-risk class, of high relative accuracy in They have a landslide risk assessment.
 
Conclusion
According to the results, respectively; Slope factors with a weight of 0.16, lithology with a weight of 0.15, and land use with a weight of 0.13 had the most role in the occurrence of landslides in the basin, according to the output of the studied algorithms, area Low and very low-risk areas have the lowest area in the basin. On the other hand, medium, high, and very high-risk zones have the largest area of ​​the basin. It can be said that the results of this study indicate the high power of the Givi-chay basin in terms of the occurrence of landslides. Due to the distribution of landslides in each of the hazard classes, all studied algorithms have a high relative accuracy in landslide risk assessment. According to the validation results, the area under the ROC curve for OWA, VIKOR, and MABAC methods was calculated to be 0.72, 0.73, 0.85 and 0.76, respectively. Therefore, the accuracy of OWA, WLC and MABAC methods is very good and the accuracy of the VIKOR method is excellent.

Keywords

Main Subjects


  1. اصغری سراسکانرود، ص.؛ امامی، ر. و پیروزی، الف. (1400). ارزیابی و پهنه‏بندی خطر زمین‏لغزش با استفاده از روش‏های OWA وANN  (مطالعة موردی: شهرستان پاوه)، مخاطرات محیط طبیعی، دورة 10، شمارة 28، صص 131-150.
  2. ایزدی، ز. و انتظاری، م. (1392). زمین‏لغزش های ایران (معرفی، عوامل، و مدیریت)، رشد آموزش جغرافیا، صص 32-37.
  3. بهاروند، س.؛ سارویی، ح. و سوری، س. (1396). پهنه‏بندی خطر زمین‏لغزش با استفاده از روش ترکیب خطی وزن‏دار، مطالعة موردی: حوضة ده یقید، استان لرستان، فصل‏نامة جغرافیای طبیعی، دورة 10، شمارة 35، صص 75-86.
  4. جمال‏آبادی، ج.؛ صفری، ف.؛ برآبادی، ع. و آل محمد، م. (1400). شناسایی و پهنه‏بندی مناطق مستعد وقوع زمین‏لغزش در دهستان ژاورود بر اساس مدل تلفیقی فازی و فرایند تحلیل شبکه، مدیریت بحران، دورة 10، شمارة 2، صص 47-55.
  5. حجازی، الف.؛ روستایی، ش. و رنجبریان شادباد، م. (1398). ارزیابی و پهنه‏بندی خطر وقوع زمین‏لغزش با استفاده از مدل ویکور، در حوضة آبریز حاجیلرچایی، جغرافیای طبیعی، دورة 12، شمارة 44، صص 51-56.
  6. خامه‏چیان، م.؛ راکعی، ب.؛ عبدالملکی، پ. و گیاهچی، پ. (1386). کاربرد سیستم شبکة عصبی مصنوعی در پهنه‏بندی خطر زمین‏لغزش، مطالعة موردی: ناحیة سفیدار گله در استان سمنان، مجلة علوم دانشگاه تهران، دورة 33، شمارة 3، صص 57-64.
  7. رجبی، م. و فیض‏الله‏پور، م. (1393). پهنه‏بندی زمین‏لغزش‏های حوضة رودخانة گیوی‏چای با استفاده از مدل پرسپترون چندلایه از نوع پیش‏خور پس‏انتشار (BP)، فصل‏نامة جغرافیا و توسعه، دورة 12، شمارة 36، صص 161-180.
  8. رهنما، م. ر.؛ آقاجانی، ح. و فتاحی، م. (1391). مکان‏یابی دفن زباله با ترکیب روش میانگین‏گیری وزن‏دار ترتیبی (OWA) و GIS در مشهد، جغرافیا و مخاطرات محیطی، دورة 1، شمارة 3، صص 87-105.
  9. شریفی پیچون، م.؛ شیرانی، ک. و شیرانی، م. (1400). اولویت‏بندی عوامل مؤثر بر وقوع زمین‏لغزش و پهنه‏بندی حساسیت آن با استفاده از روش رگرسیون چندمتغیرة خطی مطالعة موردی: حوضة آبریز و هرگان- غرب استان اصفهان، هیدروژئومورفولوژی، دورة 8، شمارة 26، صص 139-163.
  10. فیض‏اله‏پور، م. (1391). پهنه‏بندی مناطق مستعد زمین‏لغزش در حوضة رودخانة گیوی‏چای با استفاده از مدل شبکة عصبی مصنوعی، رسالة دکتری، م. رجبی، دانشکدة جغرافیا، دانشگاه تبریز.
  11. محمدنیا، م. و فلاح قالهری، غ.ع. (1397). شبیه‏سازی احتمال وقوع زمین‏لغزش با استفاده از منطق فازی و فرایند تحلیل سلسله‏مراتبی، تحقیقات کاربردی علوم جغرافیایی، سال 18، شمارة 48 ، صص 117-132.
  12. مددی، ع.؛ پیروزی، الف. و فعال نذیری، م. (1399). ارزیابی مقایسه‏ای الگوریتم‏های تصمیم‏گیری چندمعیارة MABAC و CODAS در پهنه‏بندی خطر زمین‏لغزش؛ نمونة پژوهش: شهرستان کوثر، جغرافیا و برنامه‏ریزی محیطی، سال 31، شمارة 4، صص 1-24.
  13. مددی، ع.؛ نوعی، ب. و اسمعلی، الف. (1392). ارزیابی خطر زمین‏لغزش و پهنه‏بندی آن با استفاده از مدل LIM و به‏کارگیری تکنیک GIS در حوضة آبخیز گیوی‏چای، اردبیل،نشریة علمی جغرافیا و برنامه‏ریزی، سال 17، شمارة 43، صص 26-307.
  14. میر‏آبادی، م.؛ هاشمی، ه. و امینی، ج. (1396). کاربرد مدل AHP و روش میانگین‏گیری وزن‏دار ترتیبی (OWA) در مکان‏یابی محل دفن مواد زاید شهرستان بوکان با استفاده از Arc GIS و IDRISI، فضای جغرافیایی، جلد 17، شمارة 60، صص 39-54.
  15. نادری، ف. الف.؛ ناصری، ب. و بسطامی، ن. الف. (1400). کارایی مدل ویکور در پهنه‏بندی خطر زمین‏لغزش در حوضة آبخیز سد گلال استان ایلام،جغرافیا و مخاطرات محیطی، دورة 10، شمارة 1، صص 21-39.
  16. Aher, P.; Adinarayana, J. and Gorantiwar, SD. (2013). Prioritization of watersheds using multi-criteria evaluation through the fuzzy analytical hierarchy process. Agric Eng Int CIGR J, 15(1):11-18.
  17. Alimohammadlou, Y.; Najafi, A. and Yalcin, A. (2013). Landslide process and impacts: A propused classification method, Catena, 104: 219-232.
  18. Alinezhad, A. and Khalili, J. (2019). New Methods and Applications in Multiple Attribute Decision Making (MADM). International Series in Operations Research & Management Science, vol. 277, Springer, Cham.
  19. Althuwaynee, O. F. and Pradhan, B. (2016). Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomatics Natural Hazards & Risk, 8(2): 1-27.
  20. Arab Ameri, A.; Pourghasemi, H.R. and Cerda. A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models, Science of The Total Environment, 613-614: 1385 1400.
  21. Asghari Saraskanrood, S.; Emami, R. and Piroozi, E. (2021). Evaluation and zonation of Landslide hazard with using OWA and ANN methods (case study: Paveh Township). Journal of Natural Environmental Hazards, 10(28): 131-150.
  22. Baharvand, S.; Saroei, H. and Suri, S. (2017). Landslide hazard zoning using weighted linear combination method, Case study: Deh Yaghid Basin, Lorestan Province, Physical Geography Quarterly, 10(35): 75-86.
  23. Baumgertel, A.; Luki´c, S.; Belanovi´c Simi´c, S. and Kadovi´c, R. (2019). Identifying Areas Sensitive to Wind Erosion- A Case Study of the AP Vojvodina (Serbia). Appl Sci, 19(23): 1-12.
  24. Bou kheir, R.; Cerdan, O. and Abdelah, C. (2006). Regional soil erosion risk mapping in Lebanon. Geomorphology, 82: 347-359.
  25. Bui, D.T.; Lofman, O.; Revhaug, I. and Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59(3):1413-1444.
  26. Chen, W.; Panahi, M. and Pourghasemi, H.R. (2017). Performance evaluation of GIS- based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. CATENA, 157: 310-324.
  27. Chen, L.Y. and Wang, T.C. (2009). optimizing partner's choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR, International Journal of. Production Economics, 120 (1): 233-242.
  28. Colkesen, I.; Sahin, E. and Kavzoglu, Taskin (2016). Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression, Journal of African Earth Sciences, 118: 53-64.
  29. Crosta, B. G. (2009). Dating, triggering, modeling and hazard assessment of large landslides, Geomorphology, Vol. 103: 1-4.
  30. Dai, F. and Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42: 213-228.
  31. Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S. and Alamri, AM. (2020). Spatial Landslide Risk Assessment at Phuent sholing, Bhutan. Geosciences, 10(4): 1-17.
  32. El Jazouli, A.; Barakat, A. and Khellouk, R. (2019). GIS-multi-criteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron Disasters, 6, 3.
  33. Feyzolahpour, M. (2012). Zoning of landslide prone areas in Givichay river basin using artificial neural network model, PhD thesis, Rajabi, M., Faculty of Geography, University of Tabriz.
  34. Feizizadeh, B. and Blaschke, T. (2012). Uncertainty Analysis of GIS-based Ordered Weighted Averaging Method for Landslide Susceptibility Mapping in Urmia Lake Basin, Iran, Conference: Giscience, 1-5.
  35. Ganjaeian, H.; Rezaei Arefi, M.; Peysoozi, T. and Emami, K. (2020). Zonning susceptible areas of landslide using WLC and OWA methods -A case study in Mountain cliff Khan, Iran, Sustainability Earth Review, 1(2): 43-51.
  36. Georgiou, D.; Mohammed, E.S. and Rozakis, S. (2015). Multi-criteria decisionmaking on the energy supply configuration of autonomous desalination units. Renew. Energy, 75: 459-467.
  37. Gigovic, L.; Drobnjak, S. and Pamucar, D. (2019). The Application of the Hybrid GIS Spatial Multi-Criteria Decision Analysis Best-Worst Methodology for Landslide Susceptibility Mapping. ISPRS Int. J. Geo Inf., 8, 79.
  38. Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B. and Elliot, W.J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10: 395-415.
  39. Hattanji, T. and Moriwaki, H. (2009). Implications for forecasting travel distance of future landslides. Geomorphology, Vol. 103, Issue 3: 447-454.
  40. Hejazi, A.; Roustaei, Sh. and Ranjbarian Shadbad, M. (2019). Landslide risk assessment and zoning using Vickor model, in Hajilerchai catchment. Physical Geography Quarterly, 12(44): 51-65.
  41. Hoseini, H. (2019). Use fuzzy interface systems to optimize land suitability evaluation for surface and trickle irrigation. Information Processing in Agriculture, 6(1): 11-19.
  42. Izadi, Z. and Entezari, M. (2013). Iran Landslides (Introduction, Factors and Management), Growth of Geography Education, 32-37.
  43. Jamalabadi, J.; Safari, F.; Borabadi, A. and Al-Mohammad, M. (2021). Identification and zoning of susceptible area of landslide in the Javroud rural district. Emergency Management, 10(2): 47-55.
  44. Kadavi, P.; Lee, C.W. and Lee, S. (2018). Application of ensemble-based machine learning models to landslide susceptibility mapping, Remote Sensing, 10, Issue 8: 1-18.
  45. Khamehchian, M.; Rakaei, B.; Abdolmaleki, P. and Giahchi, P. (2007). Application of Artificial Neural Network for Landslide Hazard Zonation, Case study: Sefidar Goleh area in Semnan province, Journal of Science, University of Tehran, 33 (2): 57-64.
  46. Kerekes, A.; Poszet, S. and Gal, A. (2018). Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality. Romania, Revista de geomorfologie, Vol .20: 130-146.
  47. Khan, H.; Shafique, M.; Khan, M.; Mian, A.; Safeer, U. and Chiara, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, 22 (1): 11-24.
  48. Kim, J. H. and Ahn, B.S. (2020). The Hierarchical VIKOR Method with Incomplete Information: Supplier Selection Problem, Sustainability, 12(22): 1-15.
  49. Madadi, A.; Noee, B. and Esmali, A. (2013). Landslide Hazard Assessment and Zoning Using LIM Model by GIS in Givi Chay Watershed, Ardebil. Geography and Planning, 17(43): 307-326.
  50. Madadi, A.; Piroozi, E. and Faal Naziri, M. (2021). A Comparative Evaluation of MABAC and CODAS Multi-Criteria Decision Algorithms in Landslide Risk Zoning (Case Study: Kowsar County). Geography and Environmental Planning, 31(4): 1-24.
  51. Michael, E.A. and Samanta, S. (2016). Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques.  Earth Syst. Environ., 2, 88.
  52. Mirabadi, M.; Hashemi, S. H. and Amini J. (2017). Applying AHP model and Ordered Weighted Average method in Locating Waste Disposal Site of bookan city by using Arc GIS and IDRISI Geographical space, 17 (60): 39-54.
  53. Mohammadnia, M. and Fallah, G. (2018). Landslides susceptibility mapping using fuzzy logic and AHP. Researches in Geographical Sciences. 18 (48): 115-130.
  54. Naderi, F.; Naseri, B. and Bastami, N. (2021). Efficiency of Victor model in landslide risk zoning in the watershed of Galal Dam in Ilam Province. Journal of Geography and Environmental Hazards, 10(1): 21-39.
  55. Nandi, A. and Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110: 11-20.
  56. Rabby, Y.W.; Li, Y.; Abedin, J. and Sabrina, S. (2022). Impact of Land Use/Land Cover Change on Landslide Susceptibility in Rangamati Municipality of Rangamati District, Bangladesh. ISPRS International Journal of Geo-Information, 11 (89): 1-16.
  57. Rahnama, M.; Aquajani, H. and Fattahi, M. (2012). Integrating multi-criteria evaluation techniques with geographic information Systems for landfill site selection: A case study using ordered weighted average in Mashhad. Journal of Geography and Environmental Hazards, 1(3): 87-106.
  58. Rajabi, M. and Feyzolahpour, M. (2014). Zoning the Landslides of Givichay River Basin by Using Multi-Layer Perceptron Model. Geography and Development Iranian Journal, 12(36): 161-180.
  59. Salehpour Jam, A, ; Mosaffaie, A. and Sarfaraz, F. (2021). GIS-based landslide susceptibility mapping using hybrid MCDM models. Nat Hazards, 108: 1025-1046.
  60. Sanders, M. H. and Clark, P. D. (2010). Geomorphology: Processes, Taxonomy and Applications. Nova Science Publishers, Inc. 216 P.
  61. Sharifi Paichoon, M.; Shirani, K. and Shirani, M. (2021). Prioritization of Factors Affecting the Occurrence of Landslides and Zoning Its Sensitivity Using Multiple Linear Regression Case Study: Vahargan Catchment-west of Isfahan Province. Hydrogeomorphology, 8(26): 163-139.
  62. Sorbi, A. and Farrokhnia, A. (2018). Landslide hazard evaluation and zonation of Karaj-CHaluse road (North of Iran). International Journal of Geography and Geology, 7 (2): 2305-7041.
  63. Tuş, A. and Aytaç Adalı, E. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56(3): 528-538.
  64. Wang, J.; Wei,; Wei, C. and Wei, Y. (2020). MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment, Defence Technology, 16 (1): 208-216.