Evaluation of monthly reference evapotranspiration in Iran based on the output of CORDEX-MNA project downscaled dynamic models

Document Type : Full length article

Authors

1 Assistant Professor, Department of Humanities and Social Sciences, Farhangian University, Tehran, Iran

2 PhD in Climatology, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Extended Abstract
Introduction
The evapotranspiration, as one of the important meteorological variables and the relation between the land surface and the atmosphere, is important to the study of drought and the allocation of water resources. The relationship of this climatic variable with land indices as well as water supply planning reveals its importance. Due to the high relationship between this variable and air temperature, changes in air temperature patterns in global warming and climate change will have a high impact on its behavior and distribution. The relationship and entanglement of this hydro-climatic variable with climate change, especially temperature, has caused that with any fluctuation and change in the behavior of temperature patterns, its value and distribution will also change. Iran as a country located in the arid areas of the planet earth; is currently heavily involved in water stress. This water stress will be exacerbated by climate change, rising temperatures and increased evapotranspiration. Examining the impacts of climate change can be a roadmap for environmental management in this area. The aim of the present study is to reveal the behavior of this climatic parameter in the future period compared to the historical period and its spatial distribution based on the data network.
 
Materials and Methods
In the present study, using the output of downscaled dynamic models of the CORDEX-MNA project for North Africa and the Middle -East under (RCP8.5 and RCP4.5) scenarios. For the historical period (1980 – 2005), reference evapotranspiration was estimated by the Penman- Monteith, FAO method. The NOAA-GFDL-GFDL-ESM2M regional climate models (RCMs) as the dynamic model output projection was used for the future to mid century (2025-2050).
In this study, RCP4.5 & RCP8.5 representative concentration pathway scenarios were selected, as these two scenarios are used to further investigate climate change vulnerabilities and subsequent climate change responses. The CORDEX-MNA data with 0.22 spatial resolution, RCA4 model for RCM, were used. For the future period, the ETo value is obtained directly from the output of the CORDEX-MNA coordinated project models. In fact, the reference evapotranspiration value is part of the simulation of these models. Statistical criteria are used for the correction of the models to show the similarity between the observed and modeled data in the form of statistical values.
Results and Discussion
The results showed that in the future period, based on CORDEX-MNA coordinated project simulations for North Africa and the Middle-East, downscaled dynamics models; the amount of reference evapotranspiration as one of the most important components of the hydrological cycle will increase compared to the historical period (1980-2005). In terms of temporal variation, the highest changes will occur in mid-winter to early autumn. Under the RCP scenario, the ETo will increase to 34 mm in the hot months such as August. Under the mid-term scenario, the ETo value will increase compared to the historical period, but this increasing will be less than the upper limit scenario. Spatially, the main foci of high reference evapotranspiration are located in the central areas around Kavir and Lut plains, Jazmourian areas and the southern half of the Iran. The results showed that in the context of climate change and based on the downscaled data of the CORDEX -MNA project; the range of high potential evapotranspiration in the Iran will increase. In fact, high latitudes will experience an increase in the amount of ETo due to changes in air temperature and precipitation patterns and increasing air temperature trends. These conditions will be an alarm for Iran with arid and semi-arid conditions. Any change in the amount of evapotranspiration causes drought in the environment, followed by water needs and irrigation frequency for the agricultural sector as the most important water consuming sector in Iran. Therefore, it is important to pay serious attention to water resources management programs.
 
Conclusion
 Among the models used, the output of the regional model; NOAA-GFDL-GFDL-ESM2M has more optimal conditions in simulating the effects of climate change in Iran. The ETo spatial pattern is a function of location components throughout the year. These conditions are well evident in the distribution of potential evapotranspiration. The amount of ETo will increase from west to east and from north to south of the country based on the spatial pattern obtained in the historical (1980-2005) and the future period from 2025 until 2050. The southern and central regions of the Iran are the focus of areas with high ETo. The role of altitude and latitude factor in determining this spatial pattern is obvious. Comparison of ETo historical-observational period with the future decads to 2050, shows a significant increasing in the amount of potential evapotranspiration in Iran. Under RCP8.5 from March - September ETo will reach the highest level. In areas with high ETo in Iran, the average amount of ETo will increase by an average of 11 mm from April to June and in the warm months by an average of 17 mm. Under RCP4.5 scenario, these conditions are also observed to be incremental with a lower value. In the cool and cold months, in the high regions, the amount of minor and small changes and in some areas without change is observed. Significant increasing in reference evapotranspiration in August as one of the hottest months of the year in Iran is significant; because at this time of year, the demand for water consumption in all sectors; in particular, the agricultural sector is reaching its highest level, which necessitates attention to water resources management. In general, reference evapotranspiration as one of the hydro-climatic components, with any change in air temperature, will face increasing conditions that result in this increase, imposing more drought on the environment and thus increasing the water demand. Especially in the agricultural sector. These conditions are important for the geography of Iran with its fragile climate. Therefore, the land of Iran is currently facing tensions and instability in the situation of water resources, these conditions will intensify in the coming decades under the conditions of climate change. The need to pay attention to risk management and increase resilience in the face of climate change due to global warming can be considered a roadmap in this area.

Highlights

  1. احمدی، م.؛ داداشی رودباری، ع.؛ اکبری ازیرانی، ط. و کرمی، ج. (1398). کارایی مدل HadGEM2-ES در ارزیابی نابهنجاری فصلی دمای ایران تحت سناریوهای واداشت تابشی. فیزیک زمین و فضا، 45(3)، 625-644.
  2. باب الحکمی، ع.؛ غلامی سفیدکوهی، م.ع. و عمادی، ع. (1399). اثر تغییر اقلیم بر تبخیر-تعرق مرجع در استان مازندران. تحقیقات آب‌وخاک ایران، 51 (2)، 401 –
  3. بهمنش، ج.؛ آزاد طلاتپه، ن.؛ منتظری، م، رضایی، ح. و خلیلی، ک. (1394). اثر تغییر اقلیم بر تبخیر – تعرق مرجع، کمبود بارندگی و کمبود فشار بخار هوا در ارومیه. نشریه دانش آب‌وخاک، 25 (2)، 91-79.
  4. جورابلو، س.؛ اژدری، خ، گنجی نوروزی، ز. و دلقندی، م. (1397) تأثیر تغییر اقلیم بر تبخیر – تعرق گیاه مرجع و کمبود بارندگی در منطقه سمنان. نشریه علوم و مهندسی آبیاری، 41 (4)، 75-61.
  5. حجابی، س. (1399). برآورد تبخیر-تعرق مرجع با استفاده از پیش‌نگری‌های پروژه CORDEX و بررسی سهم متغیرهای هواشناسی در تغییرات آن. نشریه ابیاری و زهکشی ایران، 6 (14)، 1938-1920.
  6. حیدری تاشه کبود، ش. و خوشخو، ی. (1398). تصویرسازی و پیش‌بینی تغییرات آتی تبخیر – تعرق مرجع در مقیاس‌های فصلی و سالانه در غرب ایران بر اساس سناریوهای انتشار RCP. نشریه تحقیقات کاربردی علوم جغرافیایی، 19 (53)، 176-157.
  7. رضیئی، ط.؛ ستوده، ف. (1396). بررسی دقت مرکز اروپایی پیش‌بینی‌های میان‌مدت جوی (ECMWF) در پیش‌بینی بارش مناطق گوناگون اقلیمی ایران. فیزیک زمین و فضا، 43، (1)، 147-133.
  8. زرین، آ. و داداشی رودباری، ع. (1399). پیش‌نگری چشم‌انداز بلندمدت دمای آینده ایران مبتنی بر برونداد پروژه مقایسه مدل‌های جفت شده فاز ششم (CMIP6). فیزیک زمین و فضا، 46(3)، 602 –
  9. زارع ابیانه، ح.؛ قبائی سوق، م. و مساعدی، ا. (1394). پایش خشک‌سالی بر مبنای شاخص بارش – تبخیر و تعرق استانداردشده (SPEI) تحت تأثیر تغییر اقلیم. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، 29 (2)، 392 –
  10. سالاری فنودی، م.؛ خسروی، م.؛ طاوسی، ت. و حمیدیان پور، م. (1399). مقایسه و ارزیابی دقت داده‌های بارش پایگاه کوردکس با داده‌های ایستگاهی (مورد کاوی: بارش تابستانه جنوب شرق ایران). پژوهش‌های اقلیم‌شناسی، 11 (43)، 32-15.
  11. عساکره، ح.؛ مسعودیان، س.ا. و ترکارانی، ف.(1400). تفکیک نقش عوامل درونی و بیرونی در وردایی دهه‌ای بارش سالانه ایران‌زمین طی چهار دهه اخیر (1394 – 1355). پژوهش‌های جغرافیای طبیعی، 53 (1)، 107 -91.
  12. فروغی، م.؛ دین پژوه. و جهانبخش اصل، س. (1398). اثر تغییر اقلیم بر روند تغییرات تبخیر – تعرق گیاه مرجع در منطقه غرب ایران. پژوهش‌های اقلیم‌شناسی. 10 (37)، 37-21.
  13. قهرمان، ن.؛ بابائیان، ا.؛ طباطبایی، س. م. (1395). ارزیابی پس پردازش برون دادهای دینامیکی مدل‌های اقلیمی در برآورد تغییرات تبخیر – تعرق پتانسیل تحت سناریوهای واداشت تابشی (بررسی موردی: دشت مشهد). فیزیک زمین و فضا، 42(3)، 696- 687.
  14. قهرمان، ن.؛ بابائیان، ا. و طباطبایی، س. م. (1395). بررسی اثرات تغییر اقلیم بر نیاز آبی و طول دوره رشد گیاه نیشکر تحت سناریوهای واداشت تابشی. نشریه حفاظت منابع آب‌وخاک، 6 (1)، 74- 63.
  15. میر حسینی، س.م.؛ قاسمیه، ه. و عبداللهی، خ. (1400). پیش‌بینی میزان تبخیر – تعرق پتانسیل ماهانه تحت سناریوهای RCP در دوره‌های آتی (مطالعه موردی: حوضه آبخیز گلپایگان). اکوهیدرولوژی، 8 (1)، 220 - 205.
  16. مسعودیان، ا. (1390). آب‌وهوای ایران، چاپ اول. مشهد: انتشارات شریعه توس مشهد.
  1. Ahmadi, H., Baaghideh, M., Dadashi-Roudbari, A.( 2021). Climate change impacts on pistachio cultivation areas in Iran: a simulation analysis based on CORDEX-MENA multi-model ensembles. Theor Appl Climatol,145, 109–120.
  2. Asakareh H., Masoudian S.A., & Turkarani F., (2021). A Discrimination of Roles of Internal and External Factors on the Decadal Variation of Annual Precipitation in Iran over Recent Four Decades (1975-2016). Natural Geography Research, 53 (1): 107-91.
  3. Babhekmi A., Gholamisefidkoohi M.A., & Emadi A., (2020). The effect of climate change on reference evapotranspiration in Mazandaran province. Iranian Soil and Water Research, 51 (2), 401 - 387. [In Persian].
  4. Behmanesh J., Azad Talatappeh N., Montaseri M., Rezayi H., & Khalili K. 2015. Climate Change Impact on Reference Evapotranspiration, Precipitation Deficit and Vapor Pressure Deficit in Urmia. Water and Soil Science, 25(2), 79-91. [In Persian].
  5. Foroghi, M., Dinpajuh, Y., & Jahanbakhshasl, S., (2019) Impact of Climate Change on Reference Crop Evapotranspiration Trends in the west rejoin of Iran. Journal of Climate Research. 10 (37), 37-21. [In Persian].
  6. Ghahraman, N., Babaeian, A., Tabatabai, S.M., (2015). Evaluation the post processed outputs of dynamic models in estimation potential evapotranspiration changes under RCP scenarios (Case Study: Mashhad plain). Journal of the Earth and Space Physics, 42 (3), 696- 687. [In Persian].
  7. Giorgi, F., Jones, C. and Asrar, G. R. (2009). Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3), 175-183. [In Persian].
  8. Hejabi S., (2020). Estimation of the Reference Evapotranspiration Using the Projections of CORDEX Project and Investigation of the Meteorological Variables Contribution in its Changes (Case Study: Lake Urmia Basin). Iranian Journal of Irrigation and Drainage, 6 (14), 1938-1920. [In Persian].
  9. Heydari Tasheh Kaboud S., & Khoshkhoy, Y., (2019). Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. researches in Geographical Sciences, 19 (53), 157-176. [In Persian].
  10. Joorabloo S., Azhdary K., Ganji Z., & Delghandi M. (2018). Climate Change Impact on Reference Evapotranspiration and Precipitation Deficit in Semnan Region. Irrigation Sciences and Engineering, 41(4), 61-75. [In Persian].
  11. Mirhosseini, S.M., Qasemieh, H., Abdullahi, Kh., (2021). Prediction of Monthly Potential Evapotranspiration under RCP Scenarios in Future Periods (Case Study: Golpayegan Basin). Eco Hydrology, 8 (1), 220 - 205. [In Persian].
  12. Musie, M., Sen, S., & Srivastava, P. (2020). Application of CORDEX-AFRICA and NEX-GDDP datasets for hydrologic projections under climate change in Lake Ziway subbasin, Ethiopia. Journal of Hydrology: Regional Studies, 31, 100-721.
  13. Masoudian, A., (2011). Climatology of Iran, first edition. Mashhad: Sharia Toos Publications. [In Persian].
  14. Pour, S. H., Abd Wahab, A. K., Shahid, S., Ismail, Z. B. (2020). Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmospheric Research, 246: 105-096.
  15. Raziei, T., Parehkar, A. (2021). Performance evaluation of NCEP/NCAR reanalysis blended with observation-based datasets for estimating reference evapotranspiration across Iran. Theor Appl Climatol, 144, 885–903. [In Persian].
  16. Raziei, T., & Stoudeh, F. (2017). Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran. Journal of the Earth AND SPACE PHYSICS. 43 (1), 133-147. [In Persian].
  17. Salarifenudi M., Khosravi M., Tausi T., & Hamidianpour M., (2020). Evaluation and comparison of the accuracy of the CORDEX database's summer precipitation network data with station data (Case study: summer precipitation of South East of Iran). Journal of Climate Research, 11 (43), 32-15. [In Persian].
  18. Yang, L., Feng, Q., Adamowaski, J.F., Yin, Z., Wen, X., Wu, M., Jia, B., & Hao, Q. (2020). Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA. Atmospheric Research, 238, 104-868.
  19. Zareabyaneh H., Ghobaeisugh M., & Masaedi A., (2014). Drought Monitoring Based on Standardized Precipitation Evaoptranspiration Index (SPEI) Under the Effect of Climate Change. Journal of Water and Soil (Agricultural Sciences and Industries), 29 (2), 392 - 374. [In Persian].
  20. Zarrin, A., & Dadashi-Roudbari, A. (2021). Projected changes in temperature over Iran by 2040 based on CMIP6 multi-model ensemble. Physical Geography Research Quarterly, 53 (1), 75-9. [In Persian].
  21. Yang, L., Feng, Q. Adamowaski, J.F., Yin, Z. Wen., X. Wu, M. Jia., B. & Hao, Q. (2020). Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA. Atmospheric Research, 238, 10-48.

Keywords

Main Subjects


  1. Ahmadi, H., Baaghideh, M., Dadashi-Roudbari, A.( 2021). Climate change impacts on pistachio cultivation areas in Iran: a simulation analysis based on CORDEX-MENA multi-model ensembles. Theor Appl Climatol,145, 109–120.
  2. Asakareh H., Masoudian S.A., & Turkarani F., (2021). A Discrimination of Roles of Internal and External Factors on the Decadal Variation of Annual Precipitation in Iran over Recent Four Decades (1975-2016). Natural Geography Research, 53 (1): 107-91.
  3. Babhekmi A., Gholamisefidkoohi M.A., & Emadi A., (2020). The effect of climate change on reference evapotranspiration in Mazandaran province. Iranian Soil and Water Research, 51 (2), 401 - 387. [In Persian].
  4. Behmanesh J., Azad Talatappeh N., Montaseri M., Rezayi H., & Khalili K. 2015. Climate Change Impact on Reference Evapotranspiration, Precipitation Deficit and Vapor Pressure Deficit in Urmia. Water and Soil Science, 25(2), 79-91. [In Persian].
  5. Foroghi, M., Dinpajuh, Y., & Jahanbakhshasl, S., (2019) Impact of Climate Change on Reference Crop Evapotranspiration Trends in the west rejoin of Iran. Journal of Climate Research. 10 (37), 37-21. [In Persian].
  6. Ghahraman, N., Babaeian, A., Tabatabai, S.M., (2015). Evaluation the post processed outputs of dynamic models in estimation potential evapotranspiration changes under RCP scenarios (Case Study: Mashhad plain). Journal of the Earth and Space Physics, 42 (3), 696- 687. [In Persian].
  7. Giorgi, F., Jones, C. and Asrar, G. R. (2009). Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3), 175-183. [In Persian].
  8. Hejabi S., (2020). Estimation of the Reference Evapotranspiration Using the Projections of CORDEX Project and Investigation of the Meteorological Variables Contribution in its Changes (Case Study: Lake Urmia Basin). Iranian Journal of Irrigation and Drainage, 6 (14), 1938-1920. [In Persian].
  9. Heydari Tasheh Kaboud S., & Khoshkhoy, Y., (2019). Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. researches in Geographical Sciences, 19 (53), 157-176. [In Persian].
  10. Joorabloo S., Azhdary K., Ganji Z., & Delghandi M. (2018). Climate Change Impact on Reference Evapotranspiration and Precipitation Deficit in Semnan Region. Irrigation Sciences and Engineering, 41(4), 61-75. [In Persian].
  11. Mirhosseini, S.M., Qasemieh, H., Abdullahi, Kh., (2021). Prediction of Monthly Potential Evapotranspiration under RCP Scenarios in Future Periods (Case Study: Golpayegan Basin). Eco Hydrology, 8 (1), 220 - 205. [In Persian].
  12. Musie, M., Sen, S., & Srivastava, P. (2020). Application of CORDEX-AFRICA and NEX-GDDP datasets for hydrologic projections under climate change in Lake Ziway subbasin, Ethiopia. Journal of Hydrology: Regional Studies, 31, 100-721.
  13. Masoudian, A., (2011). Climatology of Iran, first edition. Mashhad: Sharia Toos Publications. [In Persian].
  14. Pour, S. H., Abd Wahab, A. K., Shahid, S., Ismail, Z. B. (2020). Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmospheric Research, 246: 105-096.
  15. Raziei, T., Parehkar, A. (2021). Performance evaluation of NCEP/NCAR reanalysis blended with observation-based datasets for estimating reference evapotranspiration across Iran. Theor Appl Climatol, 144, 885–903. [In Persian].
  16. Raziei, T., & Stoudeh, F. (2017). Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran. Journal of the Earth AND SPACE PHYSICS. 43 (1), 133-147. [In Persian].
  17. Salarifenudi M., Khosravi M., Tausi T., & Hamidianpour M., (2020). Evaluation and comparison of the accuracy of the CORDEX database's summer precipitation network data with station data (Case study: summer precipitation of South East of Iran). Journal of Climate Research, 11 (43), 32-15. [In Persian].
  18. Yang, L., Feng, Q., Adamowaski, J.F., Yin, Z., Wen, X., Wu, M., Jia, B., & Hao, Q. (2020). Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA. Atmospheric Research, 238, 104-868.
  19. Zareabyaneh H., Ghobaeisugh M., & Masaedi A., (2014). Drought Monitoring Based on Standardized Precipitation Evaoptranspiration Index (SPEI) Under the Effect of Climate Change. Journal of Water and Soil (Agricultural Sciences and Industries), 29 (2), 392 - 374. [In Persian].
  20. Zarrin, A., & Dadashi-Roudbari, A. (2021). Projected changes in temperature over Iran by 2040 based on CMIP6 multi-model ensemble. Physical Geography Research Quarterly, 53 (1), 75-9. [In Persian].
  21. Yang, L., Feng, Q. Adamowaski, J.F., Yin, Z. Wen., X. Wu, M. Jia., B. & Hao, Q. (2020). Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA. Atmospheric Research, 238, 10-48.