Analysis of Simultaneous occurrence of North Atlantic and North fluctuation phases with Enso phases and its effect on winter temperature in Iran

Document Type : Full length article

Authors

1 Department of Physical Geography, Faculty of Social Sciences, University of Mohagegh Ardabili,

2 Department of Physical Geography, University of Mohaghegh Ardabili

3 I. R. of Iran Meteorological Organization, East Azerbaijan province central Bureau of meteorology

Abstract

Extended Abstract
Introduction
Among climatic elements, temperature measurement is essential. Analysis of temperature changes can reveal the climatic realities of any region. Due to Iran's location in the subtropical region, severe temperature changes are its inherent features, so it is necessary to predict and monitor air temperature. Temperature fluctuations on a global scale are somewhat affected by Tele-connections. Tele-connections are intermittent anomalies that affect atmospheric patterns on a planetary scale and have an extended return period. Southern Oscillation is one of the leading indicators of global climate variability on an annual time scale and affects the Iranian climate by changing pressure patterns. The North Atlantic Oscillation (NAO) is the most prominent pattern of Tele-connections in the Northern Hemisphere, indicating the pressure difference between the northern latitudes (Iceland region) and the temperate latitudes (Azores region). Arctic Oscillation is the first active Tele-connection pattern in the subtropical region mid-winter. The Earth's climate is not constant and environmental changes can result from changing climate systems. The behavior of a climatic pattern in each region is associated with Tele-connection patterns. The main purpose of this study was to determine the role of simultaneous occurrence between NAO and AO Tele-connections with SOI on winter temperature in Iran.
 
Methodology
In this study, the average monthly temperature data of 100 selected stations in Iran from the Islamic Republic of Iran Meteorological Organization (IRIMO), and Tele-connection indices including MEI, NAO and AO from the National-Oceanic and Atmospheric Administration (NOAA) for the thirty-year statistical period (2019-1988) were received and used as baseline data. First, all data were sorted by climatic seasons (December-January and February). Monthly normalized data were entered into STATISTICA software as the dependent variable, and Tele-connection data were entered as the independent variable to determine Pearson correlation coefficients. Since the main purpose of this study was to investigate the simultaneous effect of North Atlantic Oscillation and Arctic Oscillation with Enso Tele-connection, the positive and negative phases of the mentioned Tele-connection were identified. Thus, numbers smaller than -0.5 negative phase, between -0.5 to 0.5 neutral phase, and greater than 0.5 positive phase were considered. In the next step, the monthly temperature anomalies for the mentioned months were calculated, and the distribution of its anomalous changes in GIS software was zoned by the Inverse distance weighting (IDW) method. According to the results of correlation coefficients and the results observed in temperature anomaly maps, diagrams of the trend of changes in Tele-connection indices compared with the anomalies of changes in the average temperature of the studied stations were drawn. The results indicated that the simultaneous occurrence of the La-Nina phenomenon with the positive phases of the northern hemispheres provides the conditions for the intensification and development of cold in Iran, especially during January and February, and it is almost unlikely to expect a warm winter in this case. Comparing the trend of changes in Iran's average winter temperature with the trend of changes in North Atlantic Oscillation, Arctic Oscillation and Enso multivariate index in December, January, and February showed that in recent years, the average temperature change in December remained constant, but in January and February has been increasing for a variety of reasons, including climate change, climate change patterns, and teleportation. The gradual decrease of the North Atlantic oscillation indices, especially the Arctic oscillation, during January and February coincided with the increase in temperature, so the average temperature of Iran was normal and more than expected during the simultaneous occurrence of the negative phases of the North Atlantic oscillation indices.
 
Results and Discussion
This study's results showed a significant inverse relationship between NAO and AO Tele-connections with temperature in the northern and western parts of Iran, especially in February and January. The highest correlation between temperature and AO index was observed in Tabriz station (up to -0.66). However, no significant relationship was observed between the MEI index and temperature in most regions of Iran (except the southern strip). The critical result of this study is to reveal the role of separate phases of northern Tele-connections on winter temperature changes in Iran. The results showed that the positive phases of AO and NAO reduce the temperature of the northern and western parts of Iran. During severe positive phases of AO and NAO, the temperature anomalies of most parts of Iran change below normal. The results also showed that warm winters are associated with negative phases of northern indices in the under-study period. Also, the simultaneous occurrence of La-Nina and El-Nino phenomena with positive and negative phases of NAO and AO causes temperatures below or above normal in most central and southern regions of Iran. The simultaneous occurrence of El-Nino and La-Nina phenomena with neutral phases of North Atlantic oscillation and Arctic oscillation moderates the temperature of Iran and reduces the possibility of widespread and severe positive and negative anomalies. The occurrence of El-Nino phenomenon with neutral phases of NAO and AO has caused the occurrence of normal and higher-than-normal temperatures in the eastern and southeastern half of Iran. The results also showed that the La-Nina phenomenon with neutral phases of NAO and AO causes normal and higher than normal temperatures in the western half, especially in the northwestern regions.
 
Conclusion
The results showed that El-Nino and La-Nina phenomena do not have a direct and definite effect on winter temperatures in Iran. The simultaneous occurrence of La-Nina phenomenon with positive phases of North Atlantic oscillation and Arctic oscillation provides the conditions for a sharp decrease in winter temperature. It causes normal and below-normal temperatures in most parts of Iran. In contrast, the El-Nino phenomenon with negative phases of NAO and AO causes normal and higher-than-normal temperatures in Iran's central and southern regions. Contrary to these conditions, the simultaneous occurrence of El-Nino and La-Nina phenomena with the neutral phases of NAO and AO causes a normal temperature in winter in Iran, and the possibility of a below-normal temperature, in this case, is improbable.

Keywords

Main Subjects


  1. اکبری، ط. و مسعودیان، س. ا. (1388). شناسایی رژیم دمایی و پهنه‌بندی نواحی دمایی ایران. مجله جغرافیا و برنامه‌ریزی محیطی، 2 (33)، 74-59.
  2. امیدوار، ک. (1389). اقلیم‌شناسی دینامیک. چاپ اول، یزد: انتشارات دانشگاه یزد.
  3. پرهیزگار، د. و احمدی گیوی، ف. (1391). مطالعه ارتباط انسو با نوسان سالانه واچرخند جنب‌حاره‌ای بر روی خاورمیانه در یک دوره سی‌ساله. نشریه پژوهش‌های اقلیم‌شناسی، 3 (9)، 68-55.
  4. پور غلام، م.؛ انصاری، م.؛ عراقی نژاد، ش. و بابائیان، ا. (1400). مدل‌سازی رابطه طوفان‌های گردوغبار با متغیرهای حدی و متوسط دما در نیمه غربی کشور. نشریه پژوهش‌های اقلیم‌شناسی، 12 (45)، 126-113.
  5. سیدنژاد گل خطمی، ن.؛ بذرافشان، ج.؛ نازی قمشلو، آ. و ایران‌نژاد، پ. (1400). تحلیل همبستگی درون سالانه بارش هفتگی با دور پیوند نائو در ایران. نشریه پژوهش‌های اقلیم‌شناسی، 12(45)، 24-15.
  6. سبزی پرور، ع. ا.؛ فیروزمند، ز. و ورشاویان، و. (1399). بررسی تأثیر پدیده‌های دور پیوند در جابجایی تاریخ رخداد اولین و آخرین یخبندان پاییزه و بهاره. پژوهش‌های جغرافیای طبیعی، 52 (2)، 311-295.
  7. جهانبخش اصل، س.؛ محمدی، غ.؛ خجسته غلامی، و.؛ آزاده، ا. (1399). اثرات نوسانات شبه دوسالانه بر بارش‌های زمستانه ایران. پژوهش‌های جغرافیای طبیعی، 52 (1)،127-113.
  8. حیدری، م. و خوش‌اخلاق، ف. (1396). مدل‌سازی ارتباط شاخص‌های دور پیوند با ناهنجاری‌های دمایی فصل گرم ایران با استفاده از وایازی چندمتغیره. مجله جغرافیا و مخاطرات محیطی، 23، 66-47.
  9. حلبیان، ا. ح.؛ کرمپور، م. و محمودی مهر، ف. (1400). ارتباط نوسان شمالگان با تغییرپذیری دمای زمستانه شمال غرب ایران. نشریه پژوهش‌های اقلیم‌شناسی، 47، 140-121.
  10. خسروی، م. (1383). مطالعه روابط بین الگوهای چرخشی جوی کلان‌مقیاس نیمکره شمالی ازجمله AO با خشک‌سالی‌های سالانه سیستان و بلوچستان. مجله جغرافیا و توسعه، 2(3)، 188-167.
  11. خوش‌اخلاق، ف.؛ قنبری، ن. و معصوم پور سماکوش، ج. (1387). مطالعه اثرات نوسان اطلس شمالی بر رژیم بارش و دمای سواحل جنوبی دریای خزر. مجله پژوهش‌های جغرافیای طبیعی، 66، 70-57.
  12. دارند، م. (1393). پایش خشک‌سالی ایران به کمک شاخص شدت خشک‌سالی پالمر و ارتباط آن با الگوهای دور پیوند جوی-اقیانوسی. فصلنامه تحقیقات جغرافیایی، 29 (4)، 82-67.
  13. دوستان، ر. (1397). دور پیوند جهانی و دور پیوندهای منطقه‌ای ایران. مجله فیزیک زمین و فضا، 44 (3)، 640-625.
  14. رضائیان، م.؛ محب الحجه، ع. و احمدی گیوی، ف. (1394). چرخه زندگی فازهای مثبت و منفی NAO و اثر آن بر تغییر کمیت‌های دینامیکی بر روی ایران. نشریه پژوهش‌های اقلیم‌شناسی، 6 (21)، 10-1.
  15. رزمجو، س.؛ محمودی، پ. و امیرجهانشاهی، م. (1399). همپوشانی دوره تناوب نوسان اطلس شمالی با دوره تناوب خشک‌سالی‌ها و ترسالی‌های ایران. مجله ژئوفیزیک ایران، 14 (1)، 104-91.
  16. زارع ابیانه، ح. و بیات ورکشی، م. (1391). تأثیر پدیده انسو بر تغییرات دمای ماهانه و فصلی نیمه جنوبی کشور. مجله پژوهش‌های جغرافیایی طبیعی، 44 (2)، 84-67.
  17. صلاحی، ب. و حاجی‌زاده، ز. (1392). تحلیلی بر رابطه زمانی نوسان اطلس شمالی و شاخص‌های دمای سطحی اقیانوس اطلس با تغییرپذیری بارش و دمای استان لرستان. فصلنامه تحقیقات جغرافیایی، 28(3)، 128-117.
  18. صلاحی، ب.؛ محمدخورشیددوست، ع. و قویدل رحیمی، ی. (1386). ارتباط نوسان‌های گردش جوی- اقیانوسی اطلس شمالی با خشک‌سالی‌های استان آذربایجان شرقی. مجله پژوهش‌های جغرافیای طبیعی، 60، 156-147.
  19. عزیزی، ق؛ چهره‌آرا، ت. و صفرراد، ط. (1393). اثر هم‌زمان فازهای NAO و SOI بر آب‌وهوای ایران. مجله جغرافیا و پایداری محیط، 12، 56-43.
  20. عزیزی، ق.؛ مرادی، م.؛ و رضایی، ح. (1397). اقلیم‌شناسی کم ارتفاع‌های بریده مؤثر بر ایران و ارتباط آن با ENSO و NAO. فصلنامه تحقیقات جغرافیایی، 33 (1)، 158-153.
  21. علیجانی، بهلول. (1381). آب و هواشناسی سینوپتیک. چاپ اول، تهران: انتشارات سمت.
  22. غیور، ح. و عساکره، ح. (1381). مطالعه اثر دور پیوند بر اقلیم ایران. فصلنامه تحقیقات جغرافیایی، 94، 11027-11008.
  23. فرج‌زاده اصل، م.؛ علیجانی، ب.؛ احمدی، م.؛ مفیدی، ع.؛ بابائیان، ا. و قویدل رحیمی، ی. (1392). بررسی وردایی الگوهای دور پیوند و اثر آن‌ها بر بارش ایران. نشریه پژوهش‌های اقلیم‌شناسی، 4 (16 و 15)، 45-31.
  24. قویدل‌رحیمی، ی.؛ خوشحال دستجردی، ج. (1389). جستاری پیرامون سختی اقلیم زمستانی تبریز و ارتباط آن با نوسانات شمالگان. فصلنامه مدرس علوم انسانی، 14(1)، 196-179.
  25. قویدل‌رحیمی، ی.؛ فرج زاده اصل، م. و حاتمی کیا، م. (1395). نوسان شمالگان و نقش آن در تغییرپذیری دماهای کمینه منطقه شمال شرق ایران. نشریه تحقیقات کاربردی علوم جغرافیایی، 16 (42)، 59-41.
  26. قاسمیه، ه.؛ بذرافشان، ا. و بخشایش منش، ک. (1396). پیش‌بینی بارش ماهانه با استفاده از الگوهای دور پیوند و شبکه عصبی مصنوعی در حوزه فلات مرکزی ایران. فیزیک زمین و فضا، 43 (2)، 418-405.
  27. گودرزی، م.؛ احمدی، ح. و حسینی، س. ا. (1396). بررسی ارتباط شاخص‌های دور پیوند با مؤلفه‌های بارشی و دمایی ایستگاه کرج. مجله اکوهیدرولوژی، 4 (3)، 651-641.
  28. لکزاشکور، ق.؛ روشن، غ. و شاهکویی، ا. (1397). واسنجی اثر الگوها و شاخص‌های دور پیوند بر رخداد خشک‌سالی‌های استان گلستان. فصلنامه برنامه‌ریزی و منطقه‌ای، 8 (29)، 124-107.
  29. مسعودیان، س. ا. (1383). بررسی روند دمای ایران در نیم سده گذشته. مجله جغرافیا و توسعه، 3، 106-89.
  30. مسعودیان، ا. و اکبری، ط. (1388). شناسایی الگوهای دور پیوند نیمکره شمالی بر دمای ایران. مجله پژوهشی دانشگاه اصفهان، 22، 132-117.
  31. مسعودیان، س. ا. (1390). آب‌وهوای ایران. چاپ اول، مشهد: انتشارات شریعه توس.
  32. مرادی، ح. (1393). نوسان اطلس شمالی و تأثیر آن بر اقلیم ایران. مجله پژوهش‌های جغرافیایی طبیعی، 48، 27-15.
  33. مسعودیان، س. ا.؛ موحدی، س.؛ حسینی، م. و عادل زاده، ع. (1396). پیش‌یابی میانگین روزانه دما در کرانه‌های جنوبی دریای خزر و ارتباط آن با ارتفاع ژئوپتانسیل. مجله جغرافیا و برنامه‌ریزی محیطی، 28 (2)، 144-139.
  34. مسعودیان، س.ا.؛ دارند، م. و ناظمی­فرد، ک. (1398). واکاوی فصول دمایی ایران‌زمین و وردایی آن طی دهه‌های اخیر. فصلنامه جغرافیا و توسعه، 55، 62-45.
  35. محمودی، پ.؛­ علیجانی، ب.؛ مسعودیان، س. ا. و خسروی، م. (1394). رابطه بین الگوهای دور پیوند و یخبندان‌های فراگیر ایران، فصلنامه جغرافیا و توسعه، 40، 194-175.
  36. میرزایی حسنلو، ا.؛ عبقری، ه. و عرفانیان، م. (1399). تأثیر الگوهای دور پیوند بر بارش و خشک‌سالی حوزه دریاچه ارومیه. مجله فیزیک زمین و فضا، 46 (3)، 559-537.
  37. محجوبی، ع.؛ بخشش رباط، س. و حسین­پور، م. (1400). مروری بر برخی مطالعات پیرامون تأثیر دور پیوندها بر بارش ایران در بازه سال‌های 1383 تا 1397. مجله نیوار سازمان هواشناسی، 45 (113-112)، 44-28.
  38. محمدی ثابت، و.؛ موسوی بایگی، م؛ رضایی پرند، ح. (1395). مطالعه تطبیقی تبعات پدیده انسو بر دما و بارش مشهد. نشریه آب و خاک، 30 (6)، 2114-2101.
  39. نصر اصفهانی، م. ع.؛ احمدی گیوی، ف. و محب الحجه، ع. (1392). شبیه‌سازی عددی نوسان اطلس شمالی NAO و آثار آن در جنوب غرب آسیا. مجله فیزیک زمین و فضا، 39(3)، 158-145.

 

  1. Akbari, T., & Masoudian, A., (2009). Identification of temperature regime and zoning of temperature zones of Iran. Journal of Geography and Environmental Planning, 2(33), 59-74. [In Persian]
  2. Alijani, B., )2002(. Synoptic Climatology. Tehran: Semat Publications. [In Persian].
  3. Angstrom, , )1935. (Teleconnections of Climatic Changes in Present Times. Geographical Annular J, 2 (17), 242-258.
  4. Averyanova, E, A., Gubarev, A. V., & Polanskii, A. B., )2022(. Influence of the North Atlantic Oscillation and East Atlantic Pattern on Wind Stress Curl over the Black Sea. Russian Meteorology and Hydrology, 47, 14-22.
  5. Azizi, G., Chehreh Ara, T., & Safarrad, T., )2014(. Concurrent Effect of NAO and SOI Phases on Iran's Climate. Journal of Geography and Environmental Sustainability (GES), 12, 43-56. [In Persian]
  6. Azizi, G., Moradi, M., & Rezaeian, , )2014(. Climatology of Cut off low Affecting Iran and its Relationship with ENSO and NAO. Geographical Research Quarterly, 1, 153-158. [In Persian]
  7. Bayat Varkeshi, M., & Geysari, M., )2018(. Impact of groundwater level from ENSO phenomenon. Iranian Journal of Water Resources Research, 14 (2), 1-11. [In Persian]
  8. Calvo, N., Giorgetta Marco, A., Garcia Herrera, R., & Manzini, E., )2009(. Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM 5 Simulations. Journal of geophysical research, 114 (131), 11-19.
  9. Cenk, S., & Turgay, P., (2019). The impacts of Arctic oscillation and the North Sea Caspian pattern on the temperature and precipitation regime in Turkey. Meteorology and Atmospheric Physics, 131, 1677-1696.
  10. Darand, M., (2014). Iran Drought monitoring using Palmer drought Severity index and its relation to atmospheric-oceanic Teleconnection patterns. Geographical Researches quarterly journal, 115, 68-72. [In Persian]
  11. Ding, S., Chen, W., Feng, J., & Graf, H-f., (2016). Combined Impacts of PDO and two types of Lanina on climate Anomalies in Europe. Journal of climate, 30, 3253-3278.
  12. Doustan, R., (2018). Teleconnections of World and Teleconnections Region of Iran. Journal of The Earth and Space Physics, 44(3), 625-640. [In Persian].
  13. Farajzadeh asl, M., Alijani, B., Ahmadi, M., Mofidi, A., Babaian, I., & Gavidel Rahimi, Y., (2013).The study of Teleconnection patterns and their effects on precipitation of IRAN, Journal of Climate Research, 15, 31-45. [In Persian]
  14. Gasemyieh, H., Bazrafshan, A., & Bakhsayeshmanesh, K., (2007). Monthly Precipitation Forecasting using Teleconnection patterns and artificial Neural Network in the Central region of Iran. Journal of The Earth and Space physics, 2, 405-418. [In Persian].
  15. Ghasemi, A.R., & Khalili, D., (2006). The influence of the Arctic Oscillation on winter temperatures in Iran, Theor. Appl. Climatol, 85, 149–164.
  16. Ghavidel Rahimi, Y., Farajzadeh Asl, M., & Hatamikia, M., (2016). The Artic Oscillation (AO) and its role on of wintertime monthly minimum temperatures variability in Northeastern region of Iran. Journal of Applied Research in Geographical Sciences, 16 (42), 41-59. [In Persian].
  17. Ghavidel Rahimi, Y., & Khoshhal Dastjerdi, J., (2010). A Query on the Severity of Winter Climate in Tabriz and Its Relationship with Arctic Oscillations. MJSP, 14(1), 179-196. [In Persian].
  18. Ghayour, H., & Asakareh, H., (2002). Study of teleconnection patterns on Climate of Iran. Geographical Research Quarterly, 94, 11008-11027. [In Persian].
  19. Goudarzi, M., Ahmadi, H., & Hosseini, A., (2017). The relationship between teleconnection indexes and precipitation and temperature components of Karaj station. Journal of Ecohydrology, 4 (3), 641-651. [In Persian]
  20. Halabian, A., Karampour, M., & Mahmoudi mehr, F., (2021). The relationship between AO and variability of winter temperature in northwest of Iran. Journal of Climate Research, 47, 123-142. [In Persian].
  21. Heydari, M., & Khosh Akhlagh, F., (2017). Modeling the relationship between Teleconnection indexes with temperature anomalies of hot season in Iran using multivariate wyazi. Geography and environmental hazards, 23, 47-66. [In Persian]
  22. Hurrel, J.W., (1995). Decadal trends in the NAO. Regional temperature and precipitation science, 269, 676-679.
  23. Hye‑J, P., & Joong, B A., (2016). Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature. Climate Dynamics, 46, 3205-3221.
  24. Hyun, J L., Kyong-H, S., Qigang, W., Seoung-S, L., & Hyo-S, P., (2018). Combined Effect of the Madden-Julian Oscillation and Arctic Oscillation on Cold Temperature Over Asia. Asia- Pacific Journal of Atmospheric Sciences, 55, 75-89.
  25. Ismail, E., Khalid, O., & Hassan, A., (2020). Wavelet Analysis: A links Between the North Atlantic Oscillation and Winter Drought in the Mediterranean Watersheds of the Western Rif. Journal of European Scientific, 16 (15), 99-114.
  26. Jahanbakhsh Asl, S., Mohammadi, G., Khojasteh Gholami, V., & Azadeh, A., (2020). Effects of Quasi-Biennial Fluctuations on Winter Rainfall in Iran. Journal of Physical Geography Research, 52 (1), 113-127. [In Persian].
  27. Jianping, H., Kaz, H., & Shabbar, A., (1998). The relationship between the NAO and ENSO. Geophysical Research Letters, 25, 2707-2710.
  28. Khoshakhlagh, F., Ghanbari, N., & Masoumpour, J., (2009). Study of NAO effects on precipitation and temperature change on southern coasts of Caspian Sea. Journal of Physical Geography Research, 66, 57-70. [In Persian].
  29. Khosravi, M., (2003). Study of the relationship between atmospheric- scale cyclic patterns including AO with annual Droughts of Sistan and Baluchestan Region. Geography and Development, 2 (3), 167-188. [In Persian].
  30. Lakzasakour, G., Roushan, G., & Sahkouyi, E., (2018). Study of the effect of teleconnection patterns and indicators on Drought event of Golestan Province. Journal of Planning and Regional, 8 (29), 107-124. [In Persian]
  31. Mahjoubi, A., Bakhsesh Robat, S., & Hossein pour, M., (2021). A review of some studies on the effect of Teleconnections on Iran's precipitation during 2004-2018. Nivar Journal of Meteorological Organization, 45 (113), 28-44. [In Persian].
  32. Mahmoudi, P., Alijani, B., Masoudian, S, A., & Khosravi, M., (2015). The Relationship Between the patterns of teleconection and the pervasive frost Iran. Geography and Development, 40, 175-194. [In Persian].
  33. Marianna, B., Giovanni, C., Silvio, G., Paolo, R., Stefano, M., Javier, G., Froila, M.P., Lauriane, B., & Constantin, A., (2021). El Nino teleconnection to the Euro-Mediterranean late winter: the role of extratropical Pacific modulation. Climate Dynamics, 58, 2009-2029.
  34. Masoudian, S, A., (2004). Study of Temperature Trend in Iran in the Past Half Century. Journal of Geography and Development, 3, 89-106. [In Persian]
  35. Masoudian, S.A., (2011). Climate of Iran. Mashhad: Shariah Toos Publishing. [In Persian].
  36. Masoudian, S, A., & Akbari, T., (2009). Characterization of North hemisphere Teleconnection patterns on Iran temperature. Journal of Isfahan University Research, 22, 117-132. [In Persian].
  37. Masoudian, S, A., Drand, M., & Nazemi Fard, K., (2019). Analysis of temperature seasons of Iran and its trends during recent decades. Geography and Development, 55, 45-62. [In Persian]
  38. Masoudian, S, A., Movahhedi, S., Hoseini, M., & Adel Zadeh, A., (2017). Prediction of daily average temperature in the southern coasts of the Caspian Sea and its relationship with geopotential elevation. Geography and Environmental planning, 28 (2), 139-144. [In Persian].
  39. Mathieu, P., Sutton, R., & Dong, B., (2004). Predictability of winter climate over the North Atlantic European region during ENSO events. Journal of Climatology, 17(10), 1953-1974.
  40. Midhuna, T.M., & Dimri, A.P., (2018). Impact of AO on Indian winter monsoon. Meteorology and Atmospheric Physics, springer, 131, 1157-1167.
  41. Mirzayi Hasanlo, A., Abghari, H., & Erfanian, M., (2020). The effect of teleconnection patterns on rainfall and drought in the Urmia Lake basin. Journal of the Earth and Space Physics, 46 (3), 1-8. [In Persian]
  42. Mohammadi Sabet, V., Mousavi Bayeghi, M., & Rezaie Parand, H., (2017). Comparative Study of Consequences of ENSO Phenomenon on Temperature and Precipitation in Mashhad. Journal of Water and Soil, 30 (6), 2101- 2114. [In Persian].
  43. Moradi, H., (2014). North Atlantic Oscillation Index and its Impact on Climate of Iran. Physical Geography Research, 48, 15-27. [In Persian].
  44. Murat, T. & Faize, S. (2009). Spatio-temporal variability of precipitation total series over Turkey. International Journal of Climatology, 29, 1056-1074.
  45. Nasr Esfahany, M.A., Ahmadi Givi, F., & Mohebalhojeh, A.R., (2013). Numerical simulation of the North Atlantic Oscillation and its impact on the South West Asia. Journal of the Earth and Space Physics, 39 (3), 145-158. [In Persian]
  46. Nazemosadat, M.J., & Cordery, I., (2000). On the relationships between ENSO and autumn rainfall in Iran. International Journal of Climatology, 20 (1), 47-61.
  47. Nazemosadat, M.J., Samani, N., Barry, D.A., & Molaiiniko, M., (2006). ENSO forcing on climate change in IRAN. Iranian Journal of Science and Technology, 30, 555-565.
  48. Omidvar, K., (2010). Dynamic Climatology. Yazd: University of Yazd publishing. [In Persian].
  49. Ouyang, R., Liu, W., Fu, G., Liu, C., Hu, L., & Wang, H., (2014). Linkages between ENSO and PDO signals and precipitation, stream flow in China during the last 100 years. Hydrology and Earth Systems Science,18, 3651-3661.
  50. Parhizkar, D., & Ahmadi, F., (2011). Study of the relationship between ENSO and annual tropic fluctuation on the Middle East in a thirty-year period. Journal of Climate Research, 3 (9), 53-68. [In Persian]
  51. Peter, W., (2011). The Influence of the QBO and ENSO on the Northern Hemisphere winter stratospheric polar vortex, Atmospheric. Oceanic and planetary physics, University of oxford, 18, 1-61.
  52. Pourgholam, M., Ansari, M., Araghinezhad, S., & Babaiean, I., (2021). Modeling the relationship between dust storms and temperature limit and average variables in the western half of Iran. Journal of Climate Research, 12 (45), 113-126. [In Persian]
  53. Ranjbar Saadatabadi, A., & Nouri, F., (2016). The relationship between large-scale atmospheric control factors and dust occurrence in the western half of Iran. Journal of Climate Research, 27, 99-115. [In Persian].
  54. Razmjou, S., Mahmoudi, P., & Amirjahanshahi, M., (2020). Overlap of NAO period with the period of droughts and wetness of Iran. Iranian Journal of Geophysics, 14 (1), 91-104. [In Persian].
  55. Rezaeian, M., Mohebbolhojjeh, A., & Ahmadi Givi, F., (2015). Life cycle of positive and negative phases of NAO and its effect on dynamical quantity changes on Iran. Climatology Researches, 21, 1-10. [In Persian].
  56. Sabziparvar, A., Firozmand, Z., & Varshavian, V., (2020). The effect of teleconnection patterns on the displacement of the first and last autumn and spring frosts. Journal of Natural Geographical Research, 52 (2), 295-311. [In Persian]
  57. Saeed, S., Kucharski, F., & Almazroui, M., (2022). Impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula: the explicit role of NAO. Climate Dynamics, 31, 1-12.
  58. Salahi, B., & Hajizadeh, Z., (2014). An Analysis of the Temporal Relationship between North Atlantic Oscillation and Atlantic Surface Temperature Indicators with Precipitation Variability and Temperature in Lorestan Province. Geographical Research Quarterly, 28 (3), 117-128. [In Persian].
  59. Salahi, B., Mohammad Khorshiddoust, A., & Ghavidel Rahimi, Y., (2007). The relationship between North Atlantic atmospheric and oceanic circulation fluctuations with droughts in East Azerbaijan province. Natural Geography Researches, 60, 147-156. [In Persian].
  60. Seppala, A., Maliniemi, V., Asikainem, T., & Mursulec, K., (2013). QBO depended relation between electron precipitation and winter time surface. Journal of geophysical research, 118, 6302-6310.
  61. Seyyedneghad, N., Bazrafshan, J., Nazi Gameshlou, A., & Iran Nezhad, P., (2021). Analysis of intra-annual correlation between weekly rainfalls with NAO Teleconnection in Iran. Journal of Climate Research, 12 (45), 15-24. [In Persian].
  62. Shaolei, T., Jing- Jia, L., Lin, C., & Yongqiang, Y., (2022). Distinct Evolution of the SST Anomalies in the Far Eastern Pacific between the 1997/98 and 2015/16 Extreme El Niños. Advances in Atmospheric Scinces, 39,  927–942.
  63. Thakur, B., Karla, A., Lakshmi, V., Lamb, K., Miller, W., & Tootle, G., (2020). Linkage between ENSO phases and western US snow water equivalent. Atmospheric Reseacrch, 236, 1-10.
  64. Turkes, M., & Erlat, E., (2005). Climatological responses of winter Precipitation in Turkey to variability of the North Atlantic Oscillation during the period 1030-2001. Theoretical and Applied Climatology, 78, 33-46.
  65. Upperbrink, J., (1997). Seasonal Climate Prediction Science, 1949-1964.
  66. Young, K.L., Hye, D.V., (2015). Comparison of the impact of the Arctic Oscillation and Eurasian teleconnection on interannual variation in East Asian winter temperatures and monsoon. Theor Appl Climatology, 124, 267-279.
  67. Zare Abyane, H., & Bayatvarkeshi, M., (2011). The effect of ENSO on monthly and seasonal temperature changes of southern half of Iran. Journal of Physical Geography Research, 44 (2), 7-84. [In Persian].