Factors Affecting Late Quaternary River Terrace Sequences in Jajrood River

Document Type : Full length article


1 Department of physical Geography, Faculty of Geographical Sciences and planning, , university of Isfahan, Isfahan, Iran

2 Department of physical Geography , Faculty of Geographical Sciences and planning, , university of Isfahan, Isfahan, Iran

3 Department of physical Geography, Faculty of Geographical, , university of Tehran, Iran


Extended Abstract
River terraces represent a history of river stratigraphy and provide valuable information for understanding the interactions of tectonics, erosion, and climate change. The high altitude of the Jajrood basin has resulted in extensive glacial remnants, especially the accumulation of moraines upstream of the basin. The extent of moraine depositions under the upstream basins of the Jajrood River is not evident in the structure of river terraces and they do not have a uniform elevation. Moreover, the relations of old glacial conditions in the sedimentary interference of terraces cannot be easily reconstructed and discriminated, and there is no regular order in the stratigraphic sequence and sedimentological conditions of the river terraces. The moraine deposition seemingly has had a major role in the differences in river terrace sequences from upstream to downstream of the study area, which calls for further investigation and is also addressed in this study. Many studies have delved into the analysis of the evolution of the river terraces. Other important areas of study include paleontology and sedimentology and their effects on the canal sustainability against flow dynamics. This study aimed to explore the climatic and neo-tectonic developments of the Jajrood River Basin and the role they have played in creating terrace sequences.
Materials and methods
This pure research investigated the role of neo-tectonic developments and climate change on the formation and evolution of terraces in the Jajrood River Basin. The research was based on analytical calculations and reports prepared through surveys as well as remote sensing methods to examine the effects of tectonics in the area. In addition, sedimentological evidence was studied to see how climate change has affected the formation and evolution of these terraces. The primary research tools were topographic and geological maps alongside aerial photographs and satellite images. Other fieldworks such as terrace morphometry using GPS measurements and sedimentological analysis helped to add insight to the findings. Then, the data was analyzed in ArcGIS. Here, the Jajrood Canyon was divided into three sections to better examine the morphogenesis of the terraces. Next, the transverse profiles and stratigraphic sections were drawn up to investigate the sedimentary strata in each section through morphometry, and then the evolution of the terraces was analyzed and reconstructed. The tectonics were studied using radar images to determine vertical displacement through the small baseline subset (SBAS) time series. Here, 27 Sentinel-1 images were used for the period from Oct. 14, 2014, to Oct. 27, 2016. which was performed using Generic Mapping Tools (GMT) in Linux OS. After preparing the interferogram maps, a map of the displacement in the study area was generated using the SBAS method (Zhao, 2013). Moreover, changes in the climate were studied using sedimentological and stratigraphic evidence.
Result and discussion
The research findings can be classified into two parts. First, neo-tectonics was investigated through remote sensing methods and the analysis of vertical displacement across the region. Then, the effects of these neo-tectonic processes on the genesis and evolution of terraces were examined. In the second part, the effect of climate change on terrace developments was explored using sedimentological and stratigraphic evidence.
 In the first part, the region's tectonics was analyzed using radar imagery. In doing so, the vertical displacement was measured using SBAS time series and 27 Sentinel-1 imagery during the period from Oct. 14, 2014, to Oct. 27, 2016. The specifications of the research images are presented in Table 1. The images were selected based on the research purpose and the baseline of the images relative to each other. The VV polarization was used for all images since co-polarizations exhibit a stronger backscatter. Some sensors have different polarizations, and images with different polarizations can inform interpretations to a great extent.
After preparing the images, for measuring displacement using the SBAS method, first, the temporal and spatial baseline of the images was examined and image pairs were selected for interferogram generation (Table 2 and Figure 3), which was performed using Generic Mapping Tools (GMT) in Linux OS. After preparing the interferogram maps, a map of the displacement in the study area was generated using the SBAS method. In the end, the role of morphotectonic relations in the morphogenesis (i.e., origin and development) of the terraces were examined.
These findings suggest that terraces in the Jajrood Canyon are highly heterogeneous in terms of sedimentological structures, stratigraphy, and altitude. For instance, the T3 to T1 terraces, respectively, were located 130, 90, and 80 m above the river. These terraces have also experienced three intermittent processes. These three river terraces were created through the combined effects of climate change, tectonic uplifts, and the formation of dam lakes. The results of SAR interferometry (InSAR) and fieldworks also confirm the effect of active tectonic uplift differences along the main canal. These differences reflect the differences in their morphogenetic processes. The altitude of the terraces at the Oushan River tributary (Section 1) is nearly 130 meters. However, this section's altitude downstream (near Hajiabad Village) is estimated at 90 m. This difference cannot be merely due to baseline discrepancies. Evidence indicates that a sedimentary interference originating in the lake due to a past landslide downstream of the study area (Hajiabad landslide) is the cause of the higher altitude of the terraces in this section. The terrace sequences were not the same in any of the three sections. To be more precise, there are three identifiable terrace levels in Section 1, two in Section 2, and one in Section 3. In addition to the differences in the tectonic baseline, three factors—namely climate change, moraine, and the formation of a landslide-dam lake downstream—were identified for the genetic diversity, sequence differences, and terrace sequences throughout the three sections. In addition to morphometric differences, there were great differences in the genesis of the terrace sediments. The river has contributed the most to the formation and structure of terraces and their genesis. Nevertheless, the interference of landslide-dam lake deposits, moraines, and alluvial deposits, consecutively or simultaneously, have affected particularly sections 1 and 2 through differences in flow dynamics. Meanwhile, greater uniformity can be seen upstream, particularly in the Garmābdar basin (Section 3), such that upstream terraces in this section are predominantly glacial.


Main Subjects

  1. احمدی، طیبه.؛ صفاری، امیر کرم.؛ یمانی، مجتبی و رضایی، خلیل. (1400). تحلیل مورفوژنتیکی سکانس‌های پادگانه‌ای دره هراز (محدوده آب اسک). پژوهش‌های ژئومورفولوژی کمی، 10 (1)، 55-72.
  2. ترابی گل‌سفیدی، حسین و کریمیان اقبال، مصطفی. (1381). بررسی تکامل خاک در یک ردیف زمانی روی پادگانه‌های حاشیه رودخانه سفیدرود در گیلان مرکزی. مجله علوم خاک و آب، 16 (1)، 12-1.
  3. جعفری، غلام حسن و عباسی، مهدی. (1398). بررسی فضایی پادگانه‌های حوضه قزل اوزن در ارتباط با تکتونیک و تغییرات آب و هوایی. مجله آمایش جغرافیایی فضا، 9 (33)، 76-91.
  4. داودی، الهام.؛ شبانیان بروجنی؛ ناهید و داودیان دهکردی، علیرضا. (1394). تحلیل ویژگی‌های رسوب‌شناسی پادگانه‌های آبرفتی رودخانه زاینده‌رود و تعیین منشأ آن‌ها. پژوهش‌های فرسایش محیطی، 25 (18)، 67-84.
  5. درفشی، خه بات؛ امینی، صارم؛ حسین زاده، محمدمهدی و نصرتی، کاظم. (1396). ویژگی‌های کانی‌شناسی، بافتی، و شیمیایی نهشته‌های آبرفتی و پادگانه‌های دیرینه رودخانه سقز. پژوهش‌های جغرافیای طبیعی، 49 (4)، 698-683.
  6. رضائی، پیمان و زارع زاده، رضوان. (1393). پادگانه‌های دریایی کربناتی جزیره قشم، نمادی از تغییرات سطح آب دریای خلیج‌فارس در کواترنری. علوم زمین، 23 (92)، 67-74.
  7. شرفی، سیامک. (1394). زمین‌باستان‌شناسی حوضه رودخانه سیمره در قلمرو پادگانه‌های دریاچه‌ای هولوسن، رساله دکتری، اساتید راهنما مجتبی‌مانی و مهران مقصودی، دانشکده جغرافیا، ژئومورفولوژی، دانشگاه تهران، ایران.
  8. صالحی پور میلانی، علیرضا؛ یمانی، مجتبی؛ مقیمی، ابراهیم؛ لک، راضیه؛ جعفربیگلو، منصور و محمدی، علی. (1396). بررسی شواهد رسوبی نوسانات سطح آب دریاچه ارومیه در کواترنری. پژوهش‌های ژئومورفولوژی کمی، 6 (1)، 1-20.
  9. عظیمی راد، صمد (1391). تأثیر زمین‌لغزش بزرگ سیمره در تشکیل و تکامل تراس‌های دریاچه‌ای. پایان‌نامه کارشناسی ارشد، دانشکده جغرافیا، دانشگاه تهران.
  10. مقصودی، مهرلن و شرفی، سیامک (1394). مطالعات زمین‌باستان‌شناسی در قلمرو پادگانه‌های رودخانه‌ای. دومین همایش ملی انجمن ایرانی ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران.
  11. معینی، ابوالفضل؛ احمدی، حسن؛ جعفری، محمد؛ فیض نیا، سادات و سرمدیان، فریدون. (1388). تعیین سن پادگانه‌های دوره کواترنرمطالعه موردی حوزه آبخیز طالقان. فصلنامه جغرافیای طبیعی، 2 (5)، 48-39.
  12. یمانی، مجتبی؛ شمسی‌پور، علی‌اکبر و جعفری اقدم، مریم. (۱۳۹۰). بازسازی برف مرزهای پلئیستوسن در حوضه جاجرود، پژوهش‌های جغرافیای طبیعی. ۷۶، ۵۰-۳۵.
  13. یمانی، مجتبی. (1399). روش‌ها و تکنیک‌های پژوهش در ژئومورفولوژی. چاپ اول، تهران: انتشارات دانشگاه تهران.
  14. یمانی، مجتبی؛ مقیمی، ابراهیم؛ گورابی، ابوالقاسم؛ زمان زاده، سید محمد و محمدی، ابوطالب. (۱۳۹۷). ارتباط تناوب آخرین فوران‌های دماوند و توالی دریاچه‌های سدی گدازه‌ای طی کواترنری پسین. پژوهش‌های ژئومورفولوژی کمی، 7 (۳)، 196-215.
  15. یمانی، مجتبی؛ گورابی، ابوالقاسم و عظیمی­راد، صمد. (1391)، زمین‌لغزش بزرگ سیمره و توالی پادگانه‌های دریاچه‌ای. پژوهش‌های جغرافیای طبیعی، 44 (4)، 60-43.
  16. یمانی، مجتبی؛ مقیمی، ابراهیم. لک؛ راضیه؛ جعفربیگلو؛ منصور و صالحی پور میلانی، علیرضا. (1394). بازسازی سطوح دیرینه دریاچه ارومیه در کواترنری بامطالعه پادگانه‌های دریاچه‌ای. پژوهش‌های جغرافیای طبیعی، 48 (1)، 19-1.
  17. Ahmadi, T., safari, A., yamani, M., & Rezaei, Kh. (2021). Morphogenetic analysis of terraces sequences in Haraz valley (Ab-e-Ask area), quantitative geomorphological researches, 10 (1),  55-72.
  18. Azimi Rad, S. (2012). Impact of Seymareh landslide on the formation and evolution of lake terraces. Master Thesis, Faculty of Geography, University of Tehran.
  19. Bridgland, D.R. (2000). River terrace systems in north–west Europe: an archive of environmental change, uplift and early human occupation. Quat. Sci. Rev, 19, 1293–1303.
  20. Bridgland, D.R., & Westaway, R. (2008). Climatically controlled river terrace staircases: aworldwide Quaternary phenomenon. Geomorphology, 98, 285–315.
  21. Bridgland, D.R., Maddy, D., & Bates, M. (2004). River terrace sequences: templates for Quaternarygeochronology and marine–terrestrial correlation, J. Quat. Sci, 19, 203–218.
  22. Bull, W.B. (1979). Threshold of critical power in streams, Geol. Soc. Am. Bull, 90, 453–464.
  23. Bull, W.B. (1990). Stream–terrace genesis: implications for soil development. Geomorphology, 3, 351–367.
  24. Chambers, R. (1848). Ancient Sea Margins as Memorials of Changes in the Relative Level of Sea and Land. W.S. Orrltd, London.
  25. Cheng, S.P., Deng, Q.D., Zhou, S.W., & Yang, G.Z. (2002). Strath terraces of Jinshaan Canyon,Yellow River, and Quaternary tectonic movements of the Ordos Plateau, North China. Terra Nova, 14, 215–224.
  26. Daniel, R. C., Maisons, C., Carnec, S., Mouelic, L., King, C., & Hosford, S. (2003). Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement. Remote Sensing of Environment, 88, 468-478.
  27. Davoudi, A., Shabanian Boroujeni, N., & Davoudian Dehkordi, A.R. (2015). Analysis of sedimentological features of alluvial terraces of Zayandehrood river and determining their origin. Environmental Erosion Research, 2, 5 (18), 67-84.
  28. Darafshi, KH.B., Amini, S., Hosseinzadeh, M.M. & Nusrati, K.. (2017). Mineralogical, textural, and chemical characteristics of alluvial deposits and ancient terraces of Saqez River. Natural Geography Research, 49 (4), 698-683.
  29. Dong, S. C., Samsonov, S., & Yin, H. W. (2014). Time–Series Analysis of Subsidence Associated with Rapid Urbanization in Shanghai, China Measured with SBAS InSAR Method. Environmental Earth Sciences, 72 (3), 677–691.
  30. Herfried, M., Frank, P., & Olivier, F. (2012). Climatic and tectonic controls on the development of the River Ognon terrace system (eastern France). Geomorphology,151–152,126–138.
  31. Home, D.M. (1875). Notice of some high-water marks on the banks of the river Tweed some of its tributaries, and also of drift deposits in the valley of the Tweed Trans, Roy. Soc. Edinb, 27, 513–562.
  32. Hu, Z.B., Pan, B.T.,Wang, J.P., Cao, B., Gao, H.S. (2012). Fluvial terrace formation in the eastern Fenwei Basin, China, during the past 1.2 Ma as a combined archive of tectonics and climate change, J. Asian Earth Sci, 60, 235–245.
  33. Jafari, G. H. & Abbasi, M. (2019). Spatial study of terraces in Ghezel Ozan basin in relation to tectonics and climate change. Journal of Spatial Planning, 9 (33), 76-91.
  34. Maddy, D., Demir, T., Bridgland, D.R., Veldkamp, A., Stemerdink, C., van der Schriek, T., & Westaway, R. (2008). The Early Pleistocene development of the Gediz River, Western Turkey: an uplift-driven, climate-controlled system?. Quat. Int. 189, 115–128.
  35. Maddy, D., Macklin, M.G., & Woodward, J.C. (2001) b. River Basin Sediment Systems: Archives of Environmental Change. Balkema, Lisse, pp. 1–503.
  36. Maddy, D., Bridgland, D.R., & Westaway, R. (2001)a. Uplift-driven valley incision and climate controlled river terrace development in the Thames Valley. UK. Quat. Int. 79, 23–36.
  37. Maddy, D., Bridgland, D.R., & Green, C.P. (2000). Crustal uplift in southern England: evidence from the river terrace records. Geomorphology, 33, 167–181.
  38. Maghsoudi, M., & Sharafi, S. (2015). Geological Archaeological Studies in the Territory of River terraces, Second National Conference of the Iranian Geomorphological Association, Faculty of Geography, University of Tehran.
  39. Moeini, A., Ahmadi, H., Jafari, M., Feyznia, S., & Sarmadi, F. (2009). Determining the age of Quaternary terraces Case study of Taleghan watershed. Journal of Natural Geography, 2(5), 39-48.
  40. Ren, J.J., Zhang, S.M., Meigs, A.J., Yeats, R.S., Rui, D., Shen, X.M. (2014). Tectonic controls for transverse drainage and timing of the Xin-Ding paleolake breach in the upper reach of the Hutuo River, north China. Geomorphology, 206, 452–467.
  41. Rezaei, P., & Zarezadeh, R. (2014). Qeshm Island Carbonate Marine terraces, a Symbol of Changes in the Water Level of the Persian Gulf in the Quaternary. Earth Sciences, 23 (92), 67-74.
  42. Salehipour Milani, A.R., Yamani, M., Moghimi, A., Lak, R., Jafar Begloo, M., & Mohammadi, A. (2017). Investigation of sedimentary evidence of Urmia Lake water level fluctuations in Quaternary. Quantitative Geomorphological Research, 6(1), 1-20.
  43. Schumm, S.A., (1977). The Fluvial System. John Wiley, New York, pp. 1–211.
  44. Sun, L., (2005). Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India–Asia collision system during the Quaternary. Quat. Sci. Rev, 24, 1279–1286.
  45. Sharafi, S. (2015). Archaeological geography of Seymareh river basin in the territory of Holocene lake terraces. PhD thesis, Supervisors Mojtaba Yamani and Mehran Maghsoudi, Faculty of Geography, Geomorphology, University of Tehran, Iran.
  46. Torabi Gol Sefidi, H., & Karimian Iqbal, M. (2002). Investigation of soil evolution in a chronological order on Sefidrood river terraces in Central Gilan. Journal of Soil and Water Sciences,16 (1), 1-12.
  47. Toscano, M.A., & Macintyre, I.G. (2003). Corrected western Altantic sea-level curve for the last 11,000 years based on calibrated 14c dates from acropora palmata framework and intertidal mangrove peat, Coral Reefs, 22, 257-270.
  48. Vandenberghe, J. (2002). The relation between climate and river processes, land-forms and deposits during the Quaternary. Quat. Int, 91, 17–23.
  49. Vandenberghe, J. (2003).Climate forcing of fluvial system development: an evolution of Ideas, Quat. Sci. Rev, 22, 2053–2060.
  50. Vandenberghe, J., & Maddy, D. (2001). The response of river systems to climate change, Quat. Int. 79, 1–3.
  51. Viveen, W., Schoorl, J.M., Veldkamp, A., van Balen, R.T., Desprat, S., & Vidal-Romani, J.R. (2013). Reconstructing the interacting effects of base level, climate, and tectonic uplift in the lower Miño River terrace record: a gradient modelling evaluation. Geomorphology,186, 96–118.
  52. Wang, P., Jiang, H.C., Yuan, D.Y., Liu, X.W., & Zhang, B. (2010). Optically stimulated luminescence dating of sediments from the Yellow River terraces in Lanzhou: tectonic and climatic implications, Quat. Geochronol. 5, 181–186.
  53. Whitaker, W. (1875). Guide to the Geology of London and the Neighbourhood. Mem, Geol. Survey of England and Wales, H.M.S., London.
  54. Xu, L.B., & Zhou, S.Z. (2007). Formation process and drivingmechanisms of fluvial terrace. Sci. Geogr. Sin, 27 (5), 672–677
  55. Zhang, T.Q., Lv, H.H., Zhao, J.X., & Zhen, X.X. (2014a). Fluvial terrace formation and tectonic uplift rate—a case study of late Quaternary fluvial process in the North piedmont of the Tianshan, Northwestern China. Quat. Sci, 34 (2), 281–291
  56. Zhou, Z. (2013). The applications of InSAR time series analysis for monitoring long-term surface change in peatlands. University of Glasgow.
  57. Yamani M., Shamsipoor A.A. & Jafari Aghdam, M. (2011). Snow Reconstruction of Pleistocene Boundaries in Jajroud Basin. Natural Geography Research, 76, 50-35.
  58. Yamani, M. (2020), Research Methods and Techniques in Geomorphology, Tehran : University of Tehran Press.
  59. Yamani, M.. Moghimi, A.. Gorabi, A.. Zamanzadeh, S.M. & Mohammadi, A. (2018). The relationship between the frequency of the last Damavand eruptions and the sequence of lava dam lakes during the Late Quaternary. Quantitative Geomorphological Research, 7 ( 3), 215-196.
  60. Yamani, M.; Gorabi, A. & Azimi Rad, S. (2012). Seymareh Great Landslide and the Sequence of Lake terraces. Natural Geography Research, 44 (4), 60-43.
  61. Yamani, M., Moghimi, A., Lak, R., Jafar Biglo, M. & Salehipour, A.(2015). Reconstruction of ancient surfaces of Lake Urmia in the Quaternary by studying lake terraces. Natural Geography Research, 48 (1), 19-1.