Evaluation of changes in reservoir volume and inflow to Dez Dam under climate change conditions

Document Type : Full length article


1 Iran-Khorasan razavi-Sabzevar-Hakim sabzevari univercity- Faculty of Geography and Environmental Sciences

2 Hakim Sabzevari University

3 Department of Watershed Management

4 Meteorological Office of Isfahan Province


Extended Abstract
Worries about how to plan and exploit water resources in confronting new conditions have increased as evidence of climate change becomes more apparent. This issue has led a significant portion of recent meteorological research to examine climate change's consequences on water resources. One of the most important developments is the change in the inflows to the dam's reservoirs. The Dez Dam was built over the Dez river and is located in southwestern Iran, within 23 kilometers of distance from Andimeshk. Its maximum capacity is 3.3 billion m3. As one of the most important water supply sources in the agricultural and electric energy sector of Khuzestan province, this dam has faced severe droughts in recent years, and the flow to the reservoir has been decreasing. The purpose of this study is to evaluate the amount of inflow and reservoir volume of the dam under the conditions of climate change.
Materials and methods
To simulate basin temperature and precipitation, the accuracy of 17 Regional Climate Models of the CORDEX - WAS project (South Asia) was evaluated based on the skill score (SS). Then, a combination of ten with the lowest skill score was used to simulate the climatic parameters of temperature and precipitation for future periods. Also, the bias correction of simulated monthly precipitation and temperature data in the historical period and then the future period was done in each station and for each parameter using the change factor method. Simulations of these parameters were conducted for three 20-year periods 2020s (2020-2039), 2050s (2050-2069), and 2080s (2080-2099) under the RCP4.5 and RCP8.5 scenarios for selected stations. In this research, the SWAT semi-distributed hydrological and MODSIM models was used to simulate the inflow and reservoir volume, respectively.
Results and Discussion
The results of the downscale of the selected models and climatic scenarios indicate an increase in minimum and maximum temperatures in all months of the year and decreased average rainfall in the future. Predictions considered the range of minimum and maximum temperature increase under selected models in the RCP4.5 scenario from 1.5 - 4.2 ° C and 1.5 - 3 ° C, respectively, and in the RCP8.5 scenario from 2.7 - 5.3 ° C, and 1.6 - 5.8 ° C probable. The models also predicted the range of precipitation change to be 11 up 17% under the RCP4.5 scenario and 8 to 18% under the RCP8.5 scenario. After ensuring the hydrological model's accuracy and the general circulation models (RCM) output, the SWAT model was implemented under different scenarios. The outflows indicate a significant reduction in the flow of the Dez River in the future. The reduction rate can be between 49 and 52% in the RCP4.5 scenario and the RCP8.5 scenario was more, especially in the last decade of the 21st century, about 44 to 64%. The highest decrease will occur in the colder months of the year. In other words, the inflow decreases in December and even further decreases in April and March. One of the main reasons for the decrease in the volume of flow in the region in these months (March, April, and May) is changes in the precipitation pattern, in addition to the decrease in precipitation. In other words, in these months, the water of snow melting is associated with an increase in the river's discharge in the current climate, but such conditions will change in the future. The decrease in the flow rate entering the dam has caused a decrease in the reservoir volume of the dam, and its volume has decreased under RCP4.5 and RCP8.5 release scenarios. In the RCP4.5 scenario, the average annual volume of the reservoir will reach 1184.4, 1179.8, and 1138.8 billion m3 for the three decades of 2020-2039, 2050-2069, and 2080-2099, respectively. In the RCP8.5 scenario, this average value equals 1293.8, 1070.4, and 1008.9 billion m3, respectively. Therefore, under the two selected scenarios, the reservoir volume was reduced between 47 to 50% for the future decades. This significant decrease in volume in the future decades, which has affected the volume of water discharge of the dam, that is indicate Dez Dam will face significant challenges in come cross  with downstream needs (environmental needs, agriculture, drinking, industry, and electric energy).
This study evaluated the effect of climate change on the amount of inflow and the reservoir volume of Dez Dam under two climate scenarios. Using the semi-distributed SWAT model, the water flow simulation to the dam is done. After evaluating the model and calibrating and validating the parameters of the hydrological model, by entering the future precipitation and temperature data into the calibrated SWAT model, the flow was simulated for the three future periods under the above scenarios. The results of the climate models illustrated that the average minimum and maximum annual temperature would have increased by 3 and 3.5 degrees Celsius, respectively, for the future decades. The average annual precipitation for the study area will have decreased by 14%. The prediction of the inflow to the dam by the SWAT model under two scenarios indicate a significant decrease in the discharge of the Dez River in the future; The amount of this decrease in the RCP4.5 scenario will be between 49 to 52%, and in the RCP8.5 scenario and especially in the last decade of the 21st century, it will be more and around 44 to 64%. The decrease in the flow rate entering the dam has caused a decrease in the volume of the reservoir of the dam, and its volume will have decreased between 47 and 54 percent under the two selected scenarios for the future decades. In general, the results obtained from this study indicate that this region will move towards a climate with lower humidity and higher temperature in the future decades. This situation will increase the shortage of water resources in the basin and will intensify the water crisis in the downstream areas. Therefore, it seems that the water resources management in this basin requires a review for its sustainable development and exploitation. Since, the flow rate of Dez in the future decades will significantly decrease due to, the expected of the climate changes, the Dez dam's primary goals to meet the needs of agriculture, electricity, drinking, etc. will have face significant shortages. It is recommended to implement the policy of reducing demand, changing the cultivation pattern, recommending and developing the cultivation of low water-demanding plants, using new irrigation methods, and using unconventional waters.


Main Subjects

  1. ادیب، آ. و گرجی‌زاده، ع. (1395). بررسی و پایش خشک‌سالی با استفاده از شاخص‌های خشک‌سالی، مطالعه موردی حوضه آبریز دز. مهندسی آبیاری و آب ایران، 6(26)، 185-173.
  2. اکبریان‌اقدم، ا.؛ احمدوند، ع. و علی‌محمدی، س. (1394). مدیریت تولید آینده در نیروگاه‌های برقابی تحت تأثیر تغییر اقلیم (مطالعه موردی: نیروگاه سد کارون 4). مدیریت صنعتی، 2(7)، 242 –
  3. آقابیگی، ن.؛ اسمعلی عوری، ا.؛ مصطفی‌زاده، ر. و گلشن، م. (1398). اثرات تغییر اقلیم بر رواناب با مدل -هیدرولوژیک IHACRES در برخی از حوزه‌های آبریز استان اردبیل. مهندسی آبیاری و آب ایران، 10(2)، 181-192.‌
  4. باغبانان، پ.؛ احمدآبادی، ع. و کریمی، آ. (1400). بررسی تأثیر تغییر اقلیم بر تغییرات هیدرولوژی حوضه آبریز حبله‌رود. پژوهش‌های تغییرات آب‌وهوایی، 2(5)، 40-27.
  5. بنی‌حبیب، م.؛ حسنی، خ. و مساح بوانی، ع. (1395). بررسی اثر تغییر اقلیم بر جریان ورودی به مخزن سد شاه‌چراغی. آب‌وخاک (علوم و صنایع کشاورزی)، 1 (45)، 14 –
  6. پورکریمی، ز.؛ مقدسی، م.؛ محسنی موحد، س. و دلاور، م. (1397). بررسی اثرات تغییر اقلیم بر خصوصیات خشک‌سالی هیدرولوژیکی و کشاورزی حوضه زرینه‌رود با استفاده از شاخص‌های SRI و SSWI و مدل SWAT. تحقیقات آب‌وخاک ایران، 49(5)، 1145-1157.‌
  7. جاماب (1394). مطالعات برنامه جامع سازگاری با اقلیم، حوزه آبریز کارون بزرگ، جلد اول.
  8. جمالی، س. (1393). آسیب‌شناسی نیروگاه‌های آبی در مواجهه با اثرات تغییر اقلیم؛ مطالعه موردی: حوضه آبریز کرخه. نشریه سد و نیروگاه برق‌آبی، 1(2)، 25-37.‌
  9. رضائی‌مقدم، م.؛ مختاری، د. و شفیعی مهر، م. (1400). واسنجی و اعتبار سنجی مدل SWAT در شبیه‌سازی رواناب و رسوب در حوضه آبریز شهر چای میانه. نشریه جغرافیا و برنامه‌ریزی، 76، 139-129.
  10. زبردست رستمی، ح.؛ رائینی سرجاز، م. و غلامی، م. (1400). ارزیابی اثرات تغییر اقلیم بر آبدهی رودخانه نکارود حوضه سد گلورد. پ‍‍ژوهشنامه مدیریت حوزه آبخیز. ۱۲ (۲۴)، 216-205.
  11. سیدکابلی، ح. (1395). تصویرسازی دمای هوا و تبخیر از مخازن آب، در شرایط تغییر اقلیم آتی (مطالعه موردی: سد دز). مجله پژوهش آب ایران، 4، 101-۱۱۰.
  12. صالح‌پور، ج.؛ اشرف‌زاده، ا. و موسوی، ع. (1398). گزارش فنی: بررسی اثر تغییر اقلیم بر آبدهی حوزه آبخیز حبله‌رود. مهندسی و مدیریت آبخیز، 11، 1153-1140.
  13. فرج‌زاده، م.؛ مدنی لاریجانی، ک.؛ مساح بوانی، ع. و داوطلب، ر.(1393). اثر تغییر اقلیم بر اطمینان‌پذیری تأمین آب پایین‌دست سد کرخه و راهکارهای سازگاری با آن. حفاظت منابع آب‌وخاک، 3، 63 –
  14. قدمی، م.؛ سلطانی، س.، گودرزی، م.؛ نادری، س. و تیموری، ح. (1397). اثر تغییر اقلیم بر جریان روزانه در حوضة رودخانه سزار. علوم و مهندسی آبریزداری ایران، 12 (41)، 95-85.
  15. کارآموز، م.؛ امامی، ف.؛ احمدی، آ. و مریدی، ع. (1388). تدوین الگوی بهره‌برداری از مخزن با در نظر گرفتن تغییر اقلیم. هشتمین کنگره بین‌المللی مهندسی عمران، شیراز.
  16. کاویان، ع.؛ نامدار، م.؛ گلشن، م. و بحری، م. (1396). مدل‌سازی هیدرولوژیک اثرات تغییر اقلیمی بر نوسانات دبی جریان در رودخانه هراز. مخاطرات محیط طبیعی، 6(12)، 89-104.
  17. کونانی، ز.؛ ایلدرمی، ع.؛ زینی نوند، ح. و نوری، ح. (1399). اثر تغییر اقلیم بر رواناب حوضه آبریز سیلاخور - رحیم‌آباد لرستان. هیدروژئومورفولوژی، 7 (25)، 17-
  18. گودرزی، م. و فاتحی‌فر، آ. (1398). پهنه‌بندی خطر سیلاب در اثر تغییرات اقلیمی تحت سناریو RCP 8.5 با استفاده از مدل هیدرولوژیک SWAT در محیط Gis (حوضه آذرشهر چای). تحقیقات کاربردی علوم جغرافیایی، 19 (53) ، 117 –
  19. گودرزی، م.؛ واقعی، ح. و موسوی، م. (1399). رفتار جریان ورودی به سد سیمره در مواجهه با اثرات تغییر اقلیم. فصلنامه علوم و تکنولوژی محیط‌زیست، 22(3)، 169-182.‌
  20. لگزائیان‌پور، غ.؛ محمدرضاپور، ا. و مالمیر، م. (1395). ارزیابی آثار تغییر اقلیم بر میزان رواناب رودخانه نازلوچای در حوضه آبریز دریاچه ارومیه. جغرافیا و توسعه، 42 (14)، 198 –
  21. موسوی، ر. و معروفی، ص. (1395). بررسی پاسخ هیدرولوژیک جریان رودخانه به تغییر اقلیم (مطالعه موردی: حوضه آبریز سد دز). نشریه پژوهش‌های حفاظت آب‌وخاک، 23 (6) ، 348 –
  22. میرمهدی، م.؛ شوریان، م.؛ شرافتی، ا. و لطفی، س. (1401). چشم‌انداز اثرات تغییر اقلیم بر میزان جریان ورودی به مخزن سد مارون. مدیریت آب و آبیاری، 1، 58-45.
  23. نادری، م. (1399). اثر تغییر اقلیم بر دبی ورودی و حجم مخزن سد درودزن، مال استان فارس. علوم زمین، 10(29)، 268-259.


  1. Abbaspour, K C. (2011). User Manual for SWAT-CUP. SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.
  2. Abbaspour, K. C.; Yang, J. Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J., & Srinivasan, R., (2007(. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333 (2-4), 413-430.
  3. Adib, A. & gorgizadeh, A. (2017). Evaluation and Monitoring of drought using of drought Indexes; Case study the Dez watershed. Irrigation and Water Engineering, 7(2), 173-185. [In Persian].
  4. Aghabeigi, N., Esmali Ouri, A., Mostafazade, R., & Golshan, M. (2019). The Effects of Climate Change on Runoff Using IHACRES Hydrologic Model in Some of Watersheds, Ardabil Province. Irrigation and Water Engineering, 10(2),178-189. [In Persian].
  5. Akbarian Aghdam, A., Ahmadvand, A. & Alimohammadi, S., (2015). Management of Hydropower Future Production under Climate Change Impacts. Case study: Karun 4 Plant. Industrial Management Journal, 7(2), 215-242. (In Persian)
  6. Arnold, J. G.; Moriasi, D. N.; Gassman, P. W.; Abbaspour, K. C.; White, M. J.; Srinivasan, R.; & Jha, M. K. (2012). SWAT: Model use calibration and validation. American Society of Agriculture and Biological Engineer, 55(4), 1491-1508.
  7. Baghbanan, P., Ahmad Abadi, A., & Karimi, A. (2021). Investigating the effect of climate change on hydrological changes in Hablehrood catchment. Climate Change Research, 2(5), 27-40. (In Persian)
  8. Banihabib, M. E., Hasani, K., & Massah Bavani, A. R. (2016). Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow. Water and Soil, 30(1), 1-14. [In Persian]
  9. De Oliveira, V. A., de Mello, C. R., Beskow, S., Viola, M. R., & Srinivasan, R. (2019). Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado biome. Ecological Engineering, 133, 20-31.
  10. Farajzadeh, M., Madani Larijani, K., Massah Bevani, A., & Davtalab, R. (2014). Climate change effects on reliability of water delivery in downstream of Karkheh river basin and its adaptation strategies. Journal of Water and Soil Resources Conservation, 3(3), 49-63. [In Persian].
  11. Ghadami, M., Soltani, S., Goodarzi, M., Naderi, S., & Taimouri H. (2018). Climate Change Impact on Daily Flow in Sezar Basin. Iranian Journal of Watershed Management Science and Engineering, 12(41), 85-94. [In Persian].
  12. Ghobadi, Y., Pradhan, B., Sayyad, G.A., Kabiri, K., & Falamarzi, Y. (2015). Simulation of hydrological processes and effects of engineering projects on the Karkheh River Basin and its wetland using SWAT2009. Quaternary International, 374, 144 – 153.
  13. Goodarzi, M., & Fatehifar, A. (2019). Flood risk zoning due to climate change under RCP 8.5 scenario using hydrologic model SWAT in Gis (Azarshahr basin). Journal of Applied Researches in Geographical Sciences, 19(53), 99-117. (In Persian)
  14. Goodarzi, M., Vagheei, H., & Mousavi, M. (2020). The behavior of inflow to the Seimareh Dam in the face of climate change impacts. Journal of Environmental Science and Technology, 22(3), 169-182. [In Persian].
  15. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821.
  16. Huang, S., Krysanova, V., & Hattermann, F. F. (2013). Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model. Acta Geophysica, 61(1), 151-193.
  17. Intergovernmental Panel on Climate Change (IPCC), (2014). Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change edCB Field et al (Cambridge: Cambridge University Press).
  18. Jamab, (2016). Comprehensive Climate Adaptation Program Studies. Karun Bozorg Watershed, Volume One. [In Persian].
  19. Jamali, S. (2014). Hydropower Vulnerability Assessment in the Face of Climate Change Impacts Case Study: Karkheh River Basin. Iranian Dam and Hydroelectric Powerplant, 1 (2), 25-37. [In Persian].
  20. M., Emami. F., Ahmadi, A. & Moridi, A. (2009). Elaboration of the exploitation model of the reservoir taking into account climate change. 8th International Congress of Civil Engineering, Shiraz. [In Persian].
  21. Kavian, A., Namdar, M., Golshan, M. & Bahri, M. (2017). Hydrological modeling of climate changes impact on flow discharge in Haraz River Basin. Journal of Natural Environmental Hazards, 6(12), 89-104. [In Persian].
  22. Keteklahijani, VK., Alimohammadi, S., & Fattahi, E. (2019). Predicting changes in monthly stream flow to Karaj dam reservoir, Iran, in climate change condition and assessing its uncertainty. Ain Shams Eng J, 10(4), 669–79.
  23. Kounani, Z., Ildoromi, A., Zenivand, H., & Nouri, H. (2021). Impact of climate change on runoff of Silakhor-Rahimabad Basin in Lorestan. Hydrogeomorphology, 7(25), 17-1. [In Persian].
  24. Kounani, Z., Ildoromi, A., zenivand, H., & Nouri, H. (2021). Impact of climate change on runoff of Silakhor-Rahimabad Basin in Lorestan. Hydrogeomorphology, 7(25), 1-17. [In Persian].
  25. Krztoń, W., Walusiak, E., & Wilk-Woźniak, E. (2022). Possible consequences of climate change on global water resources stored in dam reservoirs. Science of the Total Environment, 830, 154646.
  26. Lakzaianpour, G., Mohamadrezapour, O., Malmir, M. (2016). Evaluating the Effects of Climatic Changes on Runoff of Nazloochaei River in Uremia Lake Catchment Area. Geography and Development, 14(42), 183-198. [In Persian]
  27. Li, J., Gao, Z., Guo, Y., Zhang, T., Ren, P., & Feng, P. (2019). Water supply risk analysis of Panjiakou reservoir in Luanhe River basin of China and drought impacts under environmental change. Theor Appl Climatol, 137(3–4):2393–408.
  28. Li, C., & Fang, H. (2021). Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena, 201,105199.
  29. Li, C. & Fang, H., (2021). Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena, 201, 105199.
  30. Mirmehdi, M., Shourian, M., Sharafati, A. & Lotfi, S. (2022). Projection of the effects of climate change on the inflow to Maroon Dam. Water and Irrigation Management, 12(1), 45-58. [In Persian].
  31. Mohammed, R., & Scholz, M., (2017). Adaptation Strategy to Mitigate the Impact of Climate Change on Water Resources in Arid and Semi-Arid Regions: a Case Study. Water Resources Management, 31(11), 3557-3573.
  32. Moriasi, D.N., Arnold, J.G, Van Liew, M.W, Bingner, R.L., Harmel, R.D. & Veith, TL. (2007). Model evaluation guideline for systematic quantification of accuracy in watershed simulation. American Society of Agricultural and Biological Engineers Transactions of the ASABE 50(3), 885-900.
  33. Mousavi, R. S. & Marofi, S. (2017). Investigation of the hydrologic response of river flow to climate change (Case study: Dez Dam Basin). Journal of Water and soil conservation, 23(6), 333-348. [In Persian].
  34. Naderi, M. (2020). The impact of climate change on dorudzan dam inflow and reservoir volume. Northern Fars province. Geosciences, 29(115), 259-268. [In Persian].
  35. Negewo, T. F., & Sarma, A. K. (2021). Estimation of water yield under baseline and future climate change scenarios in Genale Watershed, Genale Dawa River Basin, Ethiopia, using SWAT model. Journal of Hydrologic Engineering, 26(3), 05020051.
  36. Nohara, D., Kitoh, A., Hosaka, M. & Oki, T. (2006). Impact of Climate Change on River Discharge Projected by Multimodel Ensemble. Journal of Hydrometeorology 7, 1076- 1089.
  37. Peres, D. J., Modica, R., & Cancelliere, A. (2019). Assessing future impacts of climate change on water supply system performance: Application to the Pozzillo Reservoir in Sicily, Italy. Water, 11(12), 2531.
  38. Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L. & Tarroja, B. (2020). Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 580, 123922.
  39. Rezaei Moghaddam, M. H., Mokhtari, D. & Shafieimehr, M. (2021). Calibration and validation the SWAT model in the simulation of runoff and sediment in Shahr Chai of Miyaneh. Geography and Planning, 25(76), 129-139. [In Persian].
  40. Rocha, J., Carvalho-Santos, C., Diogo, P., Beça, P., Keizer, J. J. & Nunes, J. P. (2020). Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Science of the Total Environment, 736, 139477.
  41. Pourkarimi, Z., Moghaddasi, M., Mohseni Movahed, A., & Delavar, M. (2018). The Effects of Climate Change on the Hydrological and Agricultural Drought Characteristics Zarinehrud Basin Using SRI and SSWI Indices and SWAT Model. Iranian Journal of Soil and Water Research, 49(5), 1145-1157. [In Persian].
  42. Salehpoor, J., Ashrafzadeh, A., & Moussavi, S. A. (2019). Investigating the effect of climate change on flow of the Hablehroud Basin. Watershed Engineering and Management, 11(4), 1140-1153. [In Persian].
  43. seyed kaboli, H. (2016). Projection of air temperature and evaporation form reservoirs under future climate change (Case study: Dez reservoir). Iranian Water Researches Journal, 10(4), 101- [In Persian].
  44. Shrestha, S., Bajracharya, A. R. & Babel, M. S. (2016). Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Climate Risk Management, 14(C), 27–41.
  45. Soundharajan, B.S., Adeloye, A. J., & Remesan, R. (2016). Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. Journal of Hydrology, 538, 625–639.
  46. Sun, J., Yan, H., Bao, Z. & Wang, G. (2022). Investigating Impacts of Climate Change on Runoff from the Qinhuai River by Using the SWAT Model and CMIP6 Scenarios. Water, 14(11), 1778.
  47. Yang, G., Guo, S., Li, L., Hong, X. & Wang, L. (2016). Multi-objective operating rules for Danjiangkou reservoir under climate change. Water resources management, 30(3), 1183-1202.
  48. Zabardast Rostami, H., Raeini Sarjaz, M. & Gholami Sefidkouhi, M. A. (2021). Assessment of Climate Change Effects on River Flow of Gelevard Dam Basin. 12 (24), 205-216. [In Persian].
Volume 54, Issue 3
January 2023
Pages 365-384
  • Receive Date: 26 June 2022
  • Revise Date: 01 September 2022
  • Accept Date: 27 October 2022
  • First Publish Date: 27 October 2022