ارزیابی تأثیر کشاورزی شهری در افزایش تاب‌آوری مناطق پرجمعیت شهری: رویکردی جامع مبتنی بر ذخیره و ترسیب کربن

نوع مقاله : مقاله کامل

نویسندگان

1 گروه مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

2 گروه مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 گروه سنجش‌ازدور و سیستم اطلاعات جغرافیایی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

10.22059/jphgr.2024.381297.1007835

چکیده

تغییر کاربری و پوشش اراضی متأثر از گسترش سریع شهرنشینی و رشد جمعیت در دهه‌های اخیر چالش‌های مانند انتشار کربن در مناطق پرجمعیت شهری به وجود آورده است. زیرساختهای سبز مانند کشاورزی شهری، نقش قابل‌توجهی جهت مقابله با چالش‌های مذکور و ارتقای تاب‌آوری اکولوژیکی شهری دارند. در این تحقیق نقشه‌های کاربری و پوشش اراضی محدوده کلان‌شهر تبریز به مساحت 63/660 کیلومترمربع برای سال‌های 1395 و 1402 با استفاده از تصاویر ماهواره سنتینل-2 در بستر سامانه تحت وب گوگل ارث انجین تهیه گردید. با استفاده از مدل InVEST ارزیابی و مدل‌سازی ذخیره کربن در محدوده موردمطالعه برای سال‌های مذکور انجام گردید. آشکارسازی هم‌زمان نقش کاربری‌های مختلف با تأکید بر کشاورزی شهری با استفاده از داده‌های دورسنجی و فناوری‌های نوین از نوآوری‌های تحقیق مذکور می‌باشد. نتایج نشان می‌دهد که منطقه توسعه‌یافته تبریز با افزایش مساحت ساخت‌وسازهای انسانی، اراضی بایر و فضاهای سبز و کاهش کشاورزی شهری، مراتع و پهنه‌های آبی در دوره 1402-1395 مواجه است. مدل InVEST مقدار محتوای کل کربن ذخیره‌شده در سراسر محدوده موردمطالعه را در سال 1395 و 1402 به ترتیب 43/2 و 27/2 میلیون تن پیش‌بینی می‌کند که نشان‌دهنده کاهش ذخیره کربن به دلیل تغییر کاربری می‌باشد. کاربری کشاورزی شهری در هر دو سال بیشترین میزان ذخیره کربن را به خود اختصاص داده و کاهش مساحت این کاربری عامل اصلی انتشار کربن شناسایی می‌شود. این پژوهش، اهمیت کشاورزی شهری را در افزایش تاب‌آوری اکولوژیکی و دستیابی به اهداف توسعه پایدار شهری با استفاده از داده‌های دورسنجی و فناوری‌های نوین آشکار می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the Impact of Urban Agriculture on Enhancing Resilience in Densely Populated Urban Areas: A Comprehensive Approach Based on Carbon Storage and Sequestration

نویسندگان [English]

  • Bahman Veisi Nabikandi 1
  • Ahmad Hami 2
  • Khalil Valizadeh Kamran 3
  • Farzin Emami Namin 1
1 Landscape Architecture Department, Faculty of Agriculture, University of Tabriz, Tabriz
2 Landscape Architecture Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
3 Department of Remote Sensing and Geographical Information System, Tabriz University, Tabriz, Iran
چکیده [English]

ABSTRACT
The change in land use and land cover affected by the rapid expansion of urbanization and population growth in recent decades has created challenges such as carbon emissions in densely populated urban areas. Green infrastructures, such as urban agriculture, are significanting with the challenges above and promoting urban ecological resilience. In this research, land use and land cover maps of Tabriz metropolis with an area of 660.66 square kilometres for 2016 and 2023 were prepared using Sentinel-2 satellite images in Google Earth Engine. Using the InVEST model, evaluation and modelling of carbon storage in the studied area for the mentioned years was done. The simultaneous disclosure of the role of different uses with an emphasis on urban agriculture using remote sensing data and new technologies is one of the innovations of the mentioned research. The results show that the developed area of ​​Tabriz is facing an increase in the area of ​​human constructions, barren lands and green spaces and a decrease in urban agriculture, pastures and water areas in the period of 2016-2023. The InVEST model predicts the amount of total carbon content stored throughout the studied area in 2015 and 2012 as 2.43 and 2.27 million tons, respectively, which indicates a decrease in carbon storage due to land use change. Urban agricultural use accounts for the largest amount of carbon storage every two years and the reduction of the area of ​​this use is identified as the main cause of carbon emission. This research reveals the importance of urban agriculture in increasing ecological resilience and achieving the goals of sustainable urban development using remote sensing data and new technologies.
Extended Abstract
Introduction
Human activities exert significant anthropogenic environmental influences, significantly impacting ecosystem services (ESs) and capturing the interest of various scientific disciplines. Understanding the impact of land use/land cover (LULC) on the ecological environment is critical for the 21st century. Enhancing green infrastructure is one approach, as photosynthesis helps absorb CO2 from the atmosphere. Consequently, diverse land-uses are crucial for carbon storage and reducing CO2 emissions. The rapid expansion of urbanization and population growth in recent decades has led to challenges such as increased carbon emissions in densely populated urban areas. ESs provided by ecological spaces and green infrastructures, such as urban agriculture (UA), play a crucial role in addressing these challenges and enhancing the ecological resilience of urban areas. Tabriz City, where UA activities are integrated with urbanization, was selected as a case study to model and map carbon storage using remote sensing (RS) data. Firstly, we need to generate LULC maps for various periods. This study aims to indicate how much carbon is stored on different types of land using Sentinel-2 MSI data from Google Earth Engine (GEE) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The significance of this study lies in its potential to contribute to urban planning strategies that prioritize carbon sequestration, aiding global efforts to mitigate the impact of human activities on the environment. 
 
Methodology
This research was conducted based on a multidisciplinary approach. In the first step, LULC maps for the city of Tabriz for 2016 and 2023 were generated using Sentinel-2 satellite images on the GEE web platform. The InVEST model was employed in the second step to create a comprehensive carbon storage map using reservoir data from similar studies and the generated LULC. In the final step, the carbon storage and sequestration for different land-uses, with an emphasis on UA, were analyzed and evaluated for the period 2016-2023. This research innovates by simultaneously revealing the role of different land-uses, particularly UA, through RS data (Sentinel) and new technologies (InVEST). Therefore, Sentinel-2 MSI, as a high-resolution satellite image, was initially used for LULC classification. A decisive reason for selecting Tabriz City in this study is to observe various land-uses and urbanization trends over the last decade across the study area. Regarding the GEE platform, six different land-uses were identified: built-up area, urban green space (UGS), UA, pasture, barren land, and water bodies. A spatiotemporal analysis was conducted using actual Google Earth images to validate the categorization's accuracy.
 
Results and discussion
The maps generated on the GEE platform were validated using the Kappa coefficient for 2016 and 2023. The validation process included analyzing 439 and 437 samples, respectively. According to the findings, the Kappa coefficient in 2016 was recorded at 0.87, with a total accuracy of 92.2%. In 2023, these values were 0.86 and 88.7%, respectively. According to LULC statistics, agricultural lands occupied the largest area in 2016, accounting for 34.9%. Built-up areas ranked next with 27.3%, while UA accounted for 17.6% of the total area. Pasture accounted for 12.9%, UGS for 5.9%, and water bodies for 1.4%. The highest variation in 2023 was observed in UA (-3.7%), followed by barren lands (+2.6%) and built-up areas (+1.5%). The InVEST model results indicated that the total carbon storage for the study area in 2016 and 2023 will be 2.43 million tons and 2.27 million tons, respectively. In 2016, the largest amount of carbon absorption was attributed to UA (1,071,198 tons), followed by pasture (585,477 tons), which accounted for 44% and 24% of the total carbon storage in the region, respectively. Due to their reduced size, these two land-uses will store less carbon in 2023 compared to 2016, making them significant factors influencing carbon emissions in the study area between 2016 and 2023. Despite its small area (5.9%), UGS stored about 532,258 tons of carbon in 2016, representing 22% of the total carbon storage. In 2023, this land-use will save about 92,210 tons of carbon compared to 2016 due to its increased size. Barren lands and human constructions have the lowest carbon absorption values in the studied area. While UA and UGS account for the highest carbon storage compared to their small size, UA is identified as the main cause of carbon emissions in the study area due to its area reduction.
 
Conclusion
The current research aimed to determine the carbon storage content in Tabriz City (East Azerbaijan Province) across six land-uses; it also assessed the carbon storage content under various land-uses based on results from the InVEST model and data derived from Sentinel-2 MSI. This study highlights the importance of RS in monitoring carbon storage across different land-uses. Integrating RS data with the InVEST model facilitates the efficient and cost-effective prediction of carbon storage across the study area. Our findings, supported by the Kappa index, indicate accurate LULC classification for the entire study area in 2016 and 2023. This research identified the spread of destructive human activities in densely populated urban areas as a significant factor affecting carbon storage and emissions throughout the study area. Future research should examine the impact of ecological and human LULC changes on the provision of ESs. This would promote effective land-use planning and ecosystem management for social well-being at the local level and enable the evaluation of proposed scenarios.
 
Funding
There is no funding support.
 
Authors’ Contribution
Conceptualization: B. Veisi Nabikandi, A. Hami; Data curation: B. Veisi Nabikandi, A. Hami; Formal analysis: B. Veisi Nabikandi; Investigation: B. Veisi Nabikandi; Methodology: B. Veisi Nabikandi; Project administration: B. Veisi Nabikandi, A. Hami; Software: B. Veisi Nabikandi; Supervision: A. Hami, K. Valizadeh Kamran; F. Emami Namin; Roles/Writing - original draft: B. Veisi Nabikandi; Writing - review & editing: B. Veisi Nabikandi.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.
 

کلیدواژه‌ها [English]

  • Trend
  • Mann-Kendall Test
  • Sens Slop Estimator
  • Climate Change
  1. افسری، رسول؛ برهانی، کاظم و جعفری، شاهین. (1403). ارزیابی تغییرات پهنه‌های آبی حوضه دجله و فرات مبتنی بر تحلیل سری زمانی عوامل محیطی مختلف. پژوهش‌های جغرافیای طبیعی، 56(2)، 17-32. http//doi.org/10.22059/jphgr.2024.370358.1007804
  2. پناهی، علی. (1395). بررسی الگوهای همدیدی بر اساس دوره‌های بحرانی آلودگی هوا در وارونگی دمایی شدید شهر تبریز. پژوهش‌های جغرافیای طبیعی، 48(4)، 607-625. http//doi.org/10.22059/jphgr.2016.60831
  3. روکی، زهره؛ محمدی، حسین و زندی، رحمان. (1402). نقش تغییرات کاربری اراضی بر شکل‌گیری دمای سطح زمین در شهرها مطالعه موردی: شهر اصفهان. پژوهش‌های جغرافیای طبیعی، 55(3)، 1-17.
  4. ویسی نبی‌کندی، بهمن و شهبازی، فرزین. (1403). تعیین محتوی ذخیرة کربن در مخزن‌های مختلف تحت کاربری‌های متفاوت در منطقه میاندوآب با استفاده از دورسنجی و مدل InVEST. نشریه محیط‌زیست طبیعی، 77(2)، 241-253. http//doi.org/10.22059/jne.2024.377051.2677

 

  1. Abed, S. A., Halder, B., & Yaseen, Z. M. (2024). Investigation of the decadal unplanned urban expansion influenced surface urban heat island study in the Mosul metropolis. Urban Climate54, 101845. https://doi.org/10.1016/j.uclim.2024.101845
  2. Abolmaali, S. M. R., Tarkesh, M., Mousavi, S. A., Karimzadeh, H., Pourmanafi, S., & Fakheran, S. (2024). Identifying priority areas for conservation: using ecosystem services hotspot mapping for land-use/land-cover planning in central of Iran. Environmental Management73(5), 1016-1031. https://doi.org/10.1007/s00267-024-01944-y
  3. Adelisardou, F., Zhao, W., Chow, R., Mederly, P., Minkina, T., & Schou, J. S. (2022). Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). International Journal of Environmental Science and Technology, 1-16. https://doi.org/10.1007/s13762-021-03676-6
  4. Afsari, R., Borhani, K., & Jafari, S. (2024). Evaluation of the changes in water areas of the Tigris and Euphrates basin based on time series analysis of various environmental factors. Physical Geography Research56(2), 17-32. http//doi.org/10.22059/jphgr.2024.370358.1007804 [In Persian].
  5. Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707-719. https://doi.org/10.1016/j.scitotenv.2018.11.267
  6. Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., & Gaston, K. J. (2011). Mapping an urban ecosystem service: quantifying above‐ground carbon storage at a city‐wide scale. Journal of applied ecology48(5), 1125-1134. https://doi.org/10.1111/j.1365-2664.2011.02021.x
  7. Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., ... & Yang, S. (2022). Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Science of the Total Environment831, 154967. https://doi.org/10.1016/j.scitotenv.2022.154967
  8. Hamel, P., Guerry, A. D., Polasky, S., Han, B., Douglass, J. A., Hamann, M., ... & Daily, G. C. (2021). Mapping the benefits of nature in cities with the InVEST software. Npj Urban Sustainability1(1), 25. https://doi.org/10.1038/s42949-021-00027-9
  9. Kafy, A. A., Saha, M., Fattah, M. A., Rahman, M. T., Duti, B. M., Rahaman, Z. A., ... & Sattar, G. S. (2023). Integrating forest cover change and carbon storage dynamics: Leveraging Google Earth Engine and InVEST model to inform conservation in hilly regions. Ecological Indicators152, 110374. https://doi.org/10.1016/j.ecolind.2023.110374
  10. Khosravi, S., Lashgarara, F., Poursaeed, A., & Omidi Najafabadi, M. (2022). Modeling the relationship between urban agriculture and sustainable development: a case study in Tehran city. Arabian Journal of Geosciences15, 1-13. https://doi.org/10.1007/s12517-021-09396-y
  11. Lourdes, K. T., Hamel, P., Gibbins, C. N., Sanusi, R., Azhar, B., & Lechner, A. M. (2022). Planning for green infrastructure using multiple urban ecosystem service models and multicriteria analysis. Landscape and Urban Planning226, 104500. https://doi.org/10.1016/j.landurbplan.2022.104500
  12. Mahmoudzadeh, H., Abedini, A., & Aram, F. (2022). Urban growth modeling and land-use/land-cover change analysis in a metropolitan area (case study: Tabriz). Land11(12), 2162. https://doi.org/10.3390/land11122162
  13. Panahi, A. (2016). A survey on the synoptic patterns based on critical periods of air pollution in severe inversions of Tabriz, Iran. Physical Geography Research, 48(4), 607-625. http//doi.org/10.22059/jphgr.2016.60831 [In Persian].
  14. Rachid, L., Elmostafa, A., Mehdi, M., & Hassan, R. (2024). Assessing Carbon Storage and Sequestration Benefits of Urban Greening in Nador City, Morocco, Utilizing GIS and the InVEST Model. Sustainable Futures, 100171. https://doi.org/10.1016/j.sftr.2024.100171
  15. Rajbanshi, J., & Das, S. (2021). Changes in carbon stocks and its economic valuation under a changing land use pattern—A multitemporal study in Konar catchment, India. Land Degradation & Development32(13), 3573-3587. https://doi.org/10.1002/ldr.3959
  16. Rastkhadiv, A., & Veisi Nabikandi, B. (2024). Assessing cultural ecosystem services of urban agriculture: Analysis of small-scale using Smart-PLS software. Advanced Engineering Days, 9,161-164.
  17. Rooki, Z., Mohammadi, H., & Zandi, R. (2023). The Role of Land Use Changes in Shaping Surface Temperature in Cities: A Case Study of Isfahan. Physical Geography Research55(3), 1-17. [In Persian]. http//doi.org/10.22059/jphgr.2023.361681.1007779
  18. Shi, C., Guo, N., Gao, X., & Wu, F. (2022). How carbon emission reduction is going to affect urban resilience. Journal of Cleaner Production372, 133737. https://doi.org/10.1016/j.jclepro.2022.133737
  19. Veisi Nabikandi, B., & Shahbazi, F. (2024). Determining carbon storage content at different pools under various land uses in Miandoab region using remotely-sensed data and InVEST model. Journal of Natural Environment77(2), 241-253. http//doi.org/10.22059/jne.2024.377051.2677 [In Persian].
  20. Veisi Nabikandi, B., Shahbazi, F & Hami, A. (2024b). Spatiotemporal dynamic simulation of carbon storage and sequestration in response to land use/land cover changes. Advanced Engineering Days, 9, 153-156.
  21. Veisi Nabikandi, B., Shahbazi, F., Hami, A., & Malone, B. (2024a). Exploring carbon storage and sequestration as affected by land use/land cover changes toward achieving sustainable development goals. Soil Advances2, 100017. https://doi.org/10.1016/j.soilad.2024.100017
  22. Verma, P., Siddiqui, A. R., Mourya, N. K., & Devi, A. R. (2024). Forest carbon sequestration mapping and economic quantification infusing MLPnn-Markov Chain and InVEST carbon model in askot wildlife sanctuary, Western Himalaya. Ecological Informatics79, 102428. https://doi.org/10.1016/j.ecoinf.2023.102428
  23. Yilmaz, A. E., & Demirhan, H. (2023). Weighted kappa measures for ordinal multi-class classification performance. Applied Soft Computing, 134, 110020. https://doi.org/10.1016/j.asoc.2023.110020
  24. Zhang, F., Xu, N., Wang, C., Wu, F., & Chu, X. (2020). Effects of land use and land cover change on carbon sequestration and adaptive management in Shanghai, China. Physics and Chemistry of the Earth, Parts A/B/C120, 102948. https://doi.org/10.1016/j.pce.2020.102948
  25. Zhang, S., Ma, X., Cui, Q., & Liu, J. (2024). Does the low carbon transition impact urban resilience? Evidence from China’s pilot cities for carbon emission trading. Environmental Science and Pollution Research, 1-22. https://doi.org/10.1007/s11356-024-31903-3
  26. Zhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz, M., Islam, I. U., ... & Hatamleh, W. A. (2024). Comparison of three machine learning algorithms using google earth engine for land use land cover classification. Rangeland Ecology & Management92, 129-137. https://doi.org/10.1016/j.rama.2023.10.007