پهنه‌بندی ناپایداری دامنه‌ها با استفاده از روش‌های تصمیم‌گیری SWARA و CRITIC در محدودۀ شهر تبریز

نوع مقاله : مقاله کامل

نویسندگان

گروه ژئومورفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

10.22059/jphgr.2025.399814.1007899

چکیده

ناپایداری دامنه‌ای از جمله مهم‌ترین مخاطرات طبیعی محسوب می‌شود که سالانه خسارت‌های مالی و جانی قابل توجهی به همراه دارد و اجرای پروژه‌های عمرانی را با چالش‌های جدی مواجه می‌کند. این مطالعه با هدف شناسایی عوامل مؤثر در بروز ناپایداری دامنه‌ای و ارائه راهکارهای پیشگیرانه در کلان‌شهر تبریز انجام شده است، موضوعی که در برنامه‌ریزی‌های محیطی از اهمیت بالایی برخوردار است. در این پژوهش، از روش‌های تصمیم‌گیری SWARA و CRITIC برای وزن دهی و ارزیابی معیارها استفاده شد و نقشه پهنه‌بندی خطر با کمک نرم‌افزار ArcGIS تهیه گردید. معیارهای مورد بررسی شامل شیب، جهت شیب، ارتفاع، فاصله از گسل، فاصله از رودخانه، فاصله از جاده، لیتولوژی، کاربری اراضی و میزان بارش بودند که پس از وزن دهی، به صورت لایه‌های استانداردشده درآمدند. در نهایت، با تلفیق و رویهم‌گذاری این لایه‌ها، نقشه نهایی پهنه‌بندی مناطق مستعد حرکات دامنه‌ای تهیه شد. بررسی نتایج نشان داد که پهنه‌های ناپایدار در هر دو مدل، با مناطق وقوع لغزش‌های پیشین مطابقت دارد. به‌طور مشخص، محلاتی نظیر سیلاب، ملازینال، یوسف‌آباد، کوی ولیعصر، کوی گلپارک، شهرک‌های باغمیشه، یاغچیان، فجر، خاوران و صیاد شیرازی در محدوده‌های با خطر بسیار بالا و بالا قرار گرفته‌اند. در مقابل، مناطق غربی، شمال غربی و جنوب غربی شهر در پهنه‌های بی‌خطر جای دارند، درحالی‌که بخش‌های مرکزی و شرقی عمدتاً در محدوده‌های کم‌خطر طبقه‌بندی شده‌اند. بنابراین جهت کاهش نسبی خطرات و افزایش میزان پایداری دامنه‌ها لازم است تا حد ممکن از تغییر اکوسیستم و کاربری اراضی‌ اجتناب کرد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Zoning of Slope Instability Using SWARA and CRITIC Decision-Making Methods in the Tabriz City Region

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam
  • Nasrin Samandar
  • Tohid Rahimpour
Department of Geomorphology, University of Tabriz, Tabriz, Iran
چکیده [English]

Extended Abstract 
Introduction
Landslide hazard zoning is a fundamental instrument for risk management and strategic decision-making in environmental planning, a task of particular importance in mountainous regions with complex and dynamic terrain. The metropolis of Tabriz, constrained by its geomorphological and topographical conditions, has historically pursued a sectoral development model. This growth strategy has driven the extensive construction and expansion of satellite towns around the city’s periphery. Many of these newly developed settlements—most notably Eram Town—are located in close proximity to the active fault line north of Tabriz. This precarious location exposes them to multiple natural hazards, including earthquakes, flash floods, and diverse forms of mass movements. These factors are widely acknowledged as critical indicators in geomorphological hazard assessments, a concern further compounded by the fact that many of these settlements are built on unstable slopes composed of weak and erodible lithology.
Due to the city’s mountainous topography and the prevalence of clay-rich, unstable soils, Tabriz is highly susceptible to diverse types of slope movements, from shallow landslides to deep-seated instabilities. Accordingly, this study pursued two main objectives: (1) to assess and zone slope instability within the metropolitan area of Tabriz, and (2) to develop a robust, generalizable model for systematic landslide hazard zoning. The proposed model is designed for application not only to Tabriz but also to neighboring areas with comparable geomorphological characteristics. To this end, the evaluation integrated nine key causative factors and employed two multi-criteria decision-making (MCDM) methods—Step-wise Weight Assessment Ratio Analysis (SWARA) and Criteria Importance Through Intercriteria Correlation (CRITIC)—to derive precise weightings.
 
Methodology
SWARA is a MCDM technique designed to determine the relative weights of criteria and sub-criteria.

Step 1: A decision model is developed based on the interrelationships among parameters. The criteria used to construct the slope instability zoning map are then ranked in descending order according to their perceived importance.
Step 2: The weights of the criteria are calculated as follows: beginning with the second criterion, the evaluator specifies the relative importance of criterion j in comparison with the preceding criterion (j-1). This procedure is repeated sequentially for all remaining criteria.

In contrast to many other approaches, the CRITIC method does not rely extensively on expert judgment. Indeed, its independence from subjective expert assessments is regarded as one of its principal strengths. The method evaluates data by measuring the degree of contrast and correlation among criteria. Each criterion is represented as a vector characterized by statistical parameters, including the standard deviation, which captures the variability in its values.
 
Results and Discussion
To assess the potential for slope movements, nine key factors were identified as critical triggers of instability in the region: slope gradient, aspect, lithology, land use, precipitation, proximity to faults, proximity to rivers, and proximity to roads.
The historic urban core of Tabriz was established on relatively flat terrain with gentle slopes. However, rapid urban expansion has extended development onto adjacent steep slopes, particularly in newly established satellite towns. These towns are predominantly located in the northern and southeastern sectors of the city, both of which are characterized by steep terrain. The most erosion-prone geological units include marl, shale interbedded with sandstone, and recent fluvial alluvium. By contrast, sandstone and red marl units display comparatively higher resistance to erosion, contributing to the rugged topography and elevated relief of the basin.
The eastern and northern sectors of the city are especially prone to landslides because of their distinctive geological composition. The prevalence of highly saturable marl and clay layers in these areas creates conditions that are highly conducive to slope instability. Precipitation intensifies slope instability through the combined effects of hydrological and mechanical processes. These effects are further amplified in areas characterized by steep gradients, erosion-prone lithology, and sparse vegetation cover. Zones located near fault lines are particularly vulnerable owing to concentrated tectonic stresses, intensified rock fracturing, and an elevated probability of micro-seismic activity.
The rapid physical expansion of the city has also generated severe traffic congestion. To address this issue, beltways were constructed to divert transit traffic beyond the urban limits, leading to the development of two major highways in northern and southern Tabriz. Although originally designed exclusively for transit purposes, these corridors have progressively acquired urban functions as the city expanded along their axes.
 
Conclusion
A careful comparison of the final hazard map with the landslide distribution map confirms the reliability of this study, as the high-risk zones correspond closely with historically recorded landslide events. Therefore, the methodology and model proposed in this study offer an effective framework for urban landslide hazard zoning. In particular, areas within the neighborhoods of Silab, Malazinal, Yousef Abad, Valiasr Alley, Baghmisheh Town, Golpark Alley, Shahid Yaghchian Town, Fajr Town, Khavaran Town, and Sayyad Shirazi Town fall within very high- and high-risk zones. Conversely, the southern and western sectors are largely classified as safe zones, whereas substantial portions of the northern and eastern sectors are designated as low-risk areas.
Considering the ongoing physical and structural expansion of Tabriz, along with its increasing population, urban development requires careful management. Specifically, uncontrolled urban expansion into areas affected by the North Tabriz Fault System has heightened the city’s susceptibility to earthquakes and related geomorphological hazards, including slope instability. To mitigate future hazards, long-term urban planning should impose restrictions on development within high-risk zones. Furthermore, policymakers are advised to establish incentive programs that encourage at-risk residents to relocate to safer locations, thereby reducing their exposure to landslides and other geological hazards.
 
Funding
Tabriz Metropolitan Islamic Council Research Center.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper. This article is the result of research conducted at the University of Tabriz with financial support from the Islamic Council of Tabriz Metropolitan Research Center. The authors hereby sincerely thank the efforts of the Technology Management of the University of Tabriz, especially Dr. Nadiri and Mr. Hessami, the Director of the Islamic Council of Tabriz Metropolitan Research Center, Dr. Rouhollah Rashidi, and the Deputy Director of Research, Dr. Ahad Ebrahim Pour-Lanbaran, as well as the scientific supervisors of the project, Dr. Morad Ali Shafaghi and Dr. Roghieh Salek.
ABSTRACT
Slope instability represents one of the most severe natural hazards, leading to substantial economic damage and human casualties each year, while also posing considerable challenges for infrastructure development. This study seeks to identify the key factors driving slope instability and to outline preventive strategies within the metropolitan area of Tabriz, a case of particular significance for environmental and urban planning. The research applied the SWARA and CRITIC multi-criteria decision-making methods to weight and evaluate the selected criteria, and subsequently produced a hazard zonation map using ArcGIS. The analysis considered multiple criteria, including slope, aspect, elevation, proximity to faults, rivers, and roads, as well as lithology, land use, and precipitation. Following the weighting process, the criteria were standardized and converted into thematic layers. These layers were then integrated and overlaid to generate the final zonation map identifying areas susceptible to slope movements. The results indicate that the unstable zones delineated by both models largely correspond to locations of previously recorded landslides. Specifically, neighborhoods such as Silab, Malazināl, Yusefabad, Kuy-e Valiasr, and Kuy-e Golpark, along with residential districts including Baghmesheh, Yaghchiyan, Fajr, Khavaran, and Sayyad Shirazi, are located within very high- and high-hazard zones. By contrast, the western, northwestern, and southwestern sectors of the city are classified as safe zones, whereas the central and eastern sectors are predominantly categorized as low-hazard.
Extended Abstract 
Introduction
Landslide hazard zoning is a fundamental instrument for risk management and strategic decision-making in environmental planning, a task of particular importance in mountainous regions with complex and dynamic terrain. The metropolis of Tabriz, constrained by its geomorphological and topographical conditions, has historically pursued a sectoral development model. This growth strategy has driven the extensive construction and expansion of satellite towns around the city’s periphery. Many of these newly developed settlements—most notably Eram Town—are located in close proximity to the active fault line north of Tabriz. This precarious location exposes them to multiple natural hazards, including earthquakes, flash floods, and diverse forms of mass movements. These factors are widely acknowledged as critical indicators in geomorphological hazard assessments, a concern further compounded by the fact that many of these settlements are built on unstable slopes composed of weak and erodible lithology.
Due to the city’s mountainous topography and the prevalence of clay-rich, unstable soils, Tabriz is highly susceptible to diverse types of slope movements, from shallow landslides to deep-seated instabilities. Accordingly, this study pursued two main objectives: (1) to assess and zone slope instability within the metropolitan area of Tabriz, and (2) to develop a robust, generalizable model for systematic landslide hazard zoning. The proposed model is designed for application not only to Tabriz but also to neighboring areas with comparable geomorphological characteristics. To this end, the evaluation integrated nine key causative factors and employed two multi-criteria decision-making (MCDM) methods—Step-wise Weight Assessment Ratio Analysis (SWARA) and Criteria Importance Through Intercriteria Correlation (CRITIC)—to derive precise weightings.
 
Methodology
SWARA is a MCDM technique designed to determine the relative weights of criteria and sub-criteria.

Step 1: A decision model is developed based on the interrelationships among parameters. The criteria used to construct the slope instability zoning map are then ranked in descending order according to their perceived importance.
Step 2: The weights of the criteria are calculated as follows: beginning with the second criterion, the evaluator specifies the relative importance of criterion j in comparison with the preceding criterion (j-1). This procedure is repeated sequentially for all remaining criteria.

In contrast to many other approaches, the CRITIC method does not rely extensively on expert judgment. Indeed, its independence from subjective expert assessments is regarded as one of its principal strengths. The method evaluates data by measuring the degree of contrast and correlation among criteria. Each criterion is represented as a vector characterized by statistical parameters, including the standard deviation, which captures the variability in its values.
 
Results and Discussion
To assess the potential for slope movements, nine key factors were identified as critical triggers of instability in the region: slope gradient, aspect, lithology, land use, precipitation, proximity to faults, proximity to rivers, and proximity to roads.
The historic urban core of Tabriz was established on relatively flat terrain with gentle slopes. However, rapid urban expansion has extended development onto adjacent steep slopes, particularly in newly established satellite towns. These towns are predominantly located in the northern and southeastern sectors of the city, both of which are characterized by steep terrain. The most erosion-prone geological units include marl, shale interbedded with sandstone, and recent fluvial alluvium. By contrast, sandstone and red marl units display comparatively higher resistance to erosion, contributing to the rugged topography and elevated relief of the basin.
The eastern and northern sectors of the city are especially prone to landslides because of their distinctive geological composition. The prevalence of highly saturable marl and clay layers in these areas creates conditions that are highly conducive to slope instability. Precipitation intensifies slope instability through the combined effects of hydrological and mechanical processes. These effects are further amplified in areas characterized by steep gradients, erosion-prone lithology, and sparse vegetation cover. Zones located near fault lines are particularly vulnerable owing to concentrated tectonic stresses, intensified rock fracturing, and an elevated probability of micro-seismic activity.
The rapid physical expansion of the city has also generated severe traffic congestion. To address this issue, beltways were constructed to divert transit traffic beyond the urban limits, leading to the development of two major highways in northern and southern Tabriz. Although originally designed exclusively for transit purposes, these corridors have progressively acquired urban functions as the city expanded along their axes.
 
Conclusion
A careful comparison of the final hazard map with the landslide distribution map confirms the reliability of this study, as the high-risk zones correspond closely with historically recorded landslide events. Therefore, the methodology and model proposed in this study offer an effective framework for urban landslide hazard zoning. In particular, areas within the neighborhoods of Silab, Malazinal, Yousef Abad, Valiasr Alley, Baghmisheh Town, Golpark Alley, Shahid Yaghchian Town, Fajr Town, Khavaran Town, and Sayyad Shirazi Town fall within very high- and high-risk zones. Conversely, the southern and western sectors are largely classified as safe zones, whereas substantial portions of the northern and eastern sectors are designated as low-risk areas.
Considering the ongoing physical and structural expansion of Tabriz, along with its increasing population, urban development requires careful management. Specifically, uncontrolled urban expansion into areas affected by the North Tabriz Fault System has heightened the city’s susceptibility to earthquakes and related geomorphological hazards, including slope instability. To mitigate future hazards, long-term urban planning should impose restrictions on development within high-risk zones. Furthermore, policymakers are advised to establish incentive programs that encourage at-risk residents to relocate to safer locations, thereby reducing their exposure to landslides and other geological hazards.
 
Funding
Tabriz Metropolitan Islamic Council Research Center.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper. This article is the result of research conducted at the University of Tabriz with financial support from the Islamic Council of Tabriz Metropolitan Research Center. The authors hereby sincerely thank the efforts of the Technology Management of the University of Tabriz, especially Dr. Nadiri and Mr. Hessami, the Director of the Islamic Council of Tabriz Metropolitan Research Center, Dr. Rouhollah Rashidi, and the Deputy Director of Research, Dr. Ahad Ebrahim Pour-Lanbaran, as well as the scientific supervisors of the project, Dr. Morad Ali Shafaghi and Dr. Roghieh Salek.

کلیدواژه‌ها [English]

  • Tabriz
  • MCDM
  • CRITIC Model
  • SWARA Model
  • Slope Instability
  1. دره شوری، محمدامین و یزدی، مهران. (1401). شناسایی مناطق مستعد به وقوع زمین‌لغزش با استفاده از سیستم اطلاعات جغرافیایی و ترکیب مدل‌های یادگیری ماشین و الگوریتم‌های فرا ابتکاری. نشریه علمی پژوهشی علوم و فنون نقشه‌برداری، ۱۲ (۱)، 125-111.  
  2. دهنوی ئیلاق، مسلم و پهلوانی، پرهام. (1403). ارزیابی حساسیت زمین‌لغزش با استفاده از مدل‌های ویکور و میانگین وزنی مرتب‌شده مطالعه موردی شهرستان سوادکوه. پژوهش‌های جغرافیای طبیعی، 56(1)، 41-59.  doi: 10.22059/jphgr.2024.366517.1007792
  3. رجایی، عبدالحمید (1382)، کاربرد ژئومورفولوژی در آمایش سرزمین و مدیریت محیط، چاپ دوم، نشر قومس، تهران.
  4. رحیم‌پور، توحید؛ روستایی، شهرام؛ نخستین‌روحی، مهسا، (1396)، پهنه‌بندی خطر وقوع زمین‌لغزش با استفاده از فرآیند تحلیل سلسله‌مراتبی و GIS (مطالعه‌ی موردی: حوضه‌ی آبریز سردول چای، استان اردبیل)، هیدروژئومورفولوژی، 4(13)، 20-1.  https://dor.isc.ac/dor/20.1001.1.23833254.1396.4.13.1.6
  5. رضائی‌مقدم، محمدحسین و رحیم­پور، توحید. (1404). کاربرد روش‌ها و فنون تصمیم‌گیری چندمعیاره در مدل‌سازی مخاطرات محیطی. چاپ اول، تبریز: انتشارات دانشگاه تبریز.
  6. رضائی‌مقدم، محمدحسین؛ مختاری، داوود و سمندر، نسرین. (1400). مدل‌سازی حرکات توده‌ای و مدیریت مناطق حساس به وقوع این حرکات، با استفاده از الگوریتم‌های آماری و شبکه عصبی (مطالعه موردی: حوضه آبریز اوجان چای). جغرافیا و توسعه، 63. 174-147. doi:10.22111/j10.22111.2021.6190  
  7. رضائی‌مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل و رحیم‌پور، توحید. (1399). تحلیل خصوصیات هیدروژئومورفیک حوضه آبریز الندچای به منظور اولویت‌بندی زیر حوضه‌ها از نظر حساسیت سیل‌خیزی. جغرافیا و مخاطرات محیطی، 9(1)، 61-83. doi: 10.22067/geo.v9i1.84675
  8. رضائی‌مقدم، محمدحسین و رحیم‌پور، توحید. (1404). ارزیابی و پهنه‌بندی خطر وقوع سیل در حوضه آبریز آجی‎چای با استفاده از تکنیک تصمیم‌گیری چندمعیاره و روش آماری SI. پژوهشنامه مدیریت حوزه آبخیز، ۱۶ (۱)،۴۲-۲۷.  http://dx.doi.org/10.61882/jwmr.2024.1265
  9. روستائی، شهرام؛ خدائی قشلاق، لیلا و خدائی قشلاق، فاطمه (1393)، ارزیابی روش‌های تحلیل شبکه (ANP) و تحلیل چندمعیارة مکانی در بررسی پتانسیل وقوع زمین‌لغزش در محدودة محور و مخزن سدها (مطالعة موردی: سد قلعه‌چای). پژوهش‌های جغرافیای طبیعی، 46(4)، 495-508. doi: 10.22059/jphgr.2014.53000
  10. زندی، ایمان؛ پهلوانی، پرهام و بیگدلی، بهناز. (1401). رتبه‌بندی ‏بهینه سایت‌های ‏کاندید بیمارستان ‏با‏ استفاده‏ از‏ تلفیق‏ روش‌های وزن دهی‏ عینی ‏و تصمیم‌گیری ‏چند معیاره ‏مبتنی ‏بر سیستم‏ اطلاعات جغرافیایی. آمایش سرزمین ، 1، 347-369. 347-369. doi: 10.22059/jtcp.2021.327203.670238
  11. ساسان پور، فرزانه؛ محبی، فاطمه و کاظم، امیرحسین. (1400). تحلیل و پهنه‌بندی مخاطره سیل (مطالعه موردی: حوضه آبخیز طالقان، اطلاعات جغرافیایی سپهر، 119، 173-159. https://doi.org/10.22131/sepehr.2021.247892
  12. سمندر، نسرین. (1400). ارزیابی اثر تغییرات هیدروژئومورفولوژیک بر جریان آب­های سطحی و زیرزمینی حوضه­ی آبریز اوجان­چای با استفاده از مدل نیمه توزیعی SWAT. رساله‌ی دکتری ژئومورفولوژی، به راهنمایی دکتر محمدحسین رضائی مقدم، دانشگاه تبریز، تبریز.
  13. سمندر، نسرین و حجازی، سیداسدالله. (1398). ارزیابی عملکرد روش‌های آماری رگرسیون لجستیک و شبکه عصبی چندلایه پرسپترون در پیش‌بینی وقوع حرکات توده‌ای( حوضه آبریز کمانج‌چای علیا). فضای جغرافیایی، شماره 66، 97-77.  
  14. مختاری، داود؛ رضائی مقدم، محمدحسین؛ رحیم‌پور، توحید و معزز، سمیه، (1399)، تهیۀ نقشۀ خطر وقوع سیلاب در حوضۀ آبریز گمناب‌چای با استفاده از مدل ANP و تکنیک GIS. اکوهیدرولوژی، 7(2)، 509-497. doi: 10.22059/ije.2020.298759.1298
  15. مختاری، داوود، امامی کیا، وحید، (1393)، پهنه‌بندی کاربری اراضی شهری شهرک ارم تبریز بر اساس شاخص‌های اساسی مخاطرات ژئومورفولوژیک. آمایش جغرافیایی فض، 12، 169-92.  
  16. معزز، سمیه؛ روستایی، شهرام و رحیم‌پور، توحید. (1398). پهنه‌بندی خطر وقوع زمین‌لغزش در حوضه آبریز نهندچای با استفاده از مدل ANP و تکنیک GIS. پژوهش‌های ژئومورفولوژی کمّی، 8(2)، 37-23.  doi:10.29252/jwmr.7.14.87 
  17. Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bull. Eng. Geol. Environ. 58, 21 – 44. doi:10.1007/s100640050066
  18. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65,15–31. https://doi.org/10.1016/j.geomorph.2004.06.010
  19. Darreshuri, M. A., & Yazdi, M. (2012). Identification of landslide-prone areas using geographic information systems and a combination of machine learning models and meta-heuristic algorithms. Scientific Research Journal of Surveying Sciences and Technologies, 12 (1), 111-125. [In Persian]
  20. Dehnavi Eelagh, M., & Pahlavani, P. (2024). Landslide Susceptibility Assessment using VIKOR and Ordered Weighted Averaging Methods A Case Study of Savadkuh County. Physical Geography Research, 56(1), 41-59. doi: 10.22059/jphgr.2024.366517.1007792 [In Persian]
  21. Ercanoglu, M., Gokceoglu, C., & Van Asch, T. W., (2004). Landslide susceptibility zoning north of Yenice (Nw Turkey) by multivariate statistical techniques. Natural Hazards, 32, 1 - 23. doi :10.1023/B:NHAZ.0000026786.85589.4a
  22. Faming, H., Kunlong, Y., Jinsong, H., Lei, G., & Peng, W., (2017). Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine”. Engineering Geology, 223(5), 11-22.doi: http://dx.doi.org/10.1016/j.enggeo.2017.04.013
  23. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P., (1999). Landslide hazard evaluation: a review of Current techniques and their application in a multi - scale study, Central Italy. Geomorphology, 1(31), 181 - 216. https://doi.org/10.1016/S0169-555X(99)00078-1
  24. Huang, F., Yin, K., Huang, J., Gui, L., & Wang, P. (2017). Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Engineering Geology, 223(5), 11-22. http://dx.doi.org/10.1016/j.enggeo.2017.04.013
  25. Jiao, Y., Zhao, D., Ding, Y., Liu, Y., Xu, Q., Qiu, Y.,  & Li, R. (2019). Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility: A case study at a World Heritage site in Southwest China. Catena, 183(2), 104221-104235. http://dx.doi.org/10.1016/j.catena.2019.104221
  26. Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management , 11(2), 243–258. http://dx.doi.org/10.3846/jbem.2010.12
  27. Li, Zh., Lianghao, H., Linyu, F., Jinsong, H., Faming, H., Jiawu, Ch., Zihe, Zh., & Yuhao, W., (2020). Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors (Basel). 20(6), 1576. http://dx.doi.org/10.3390/s20061576
  28. Moazzez, S., roostaei, S., & Rahimpour, T. (2019). Landslide Hazard Zonation Using ANP model and GIS technique in the Nahand Chai Basin. Quantitative Geomorphological Research, 8(2), 23-37. [in persian]
  29. Mokhtari, D., & Emamikia, V., (2014), Zoning of urban land use of Eram town of Tabriz based on basic indicators of geomorphological hazards. Geographical Space Planning, 12-169-92.  [In Persian]
  30. Mokhtari, D., Rezaei Moghaddam, M.H., Rahimpour, T., & Moazzez, S., (2020). Preparing the Risk Map of Flood Occurrence in the Ghomnab Chai Basin Using ANP Model and GIS Technique. Journal of Ecohydrology, 7(2), 497-509. doi: 10.22059/ije.2020.298759.1298 [in persian]
  31. Rahimpour, T., Roostaei, S., & Nakhostinrouhi, M., (2018). Landslide Hazard Zonation Using Analytical Hierarchy Process and GIS A Case Study of Sardool Chay Basin, Ardabil Province. Journal of Hydrogeomorphology, 4(13), 1-20. https://dor.isc.ac/dor/20.1001.1.23833254.1396.4.13.1.6 [in persian]
  32. Rajaee, A. (2003). Application of geomorphology in land use planning and environmental management. 2nd edition, Tehran: Ghomes Publishing. [In Persian]
  33. Rezaei Moghaddam, M. H., Hejazi, S. A., Vlaizadeh Kamran, K., & Rahimpoor, T. (2020). Analysis of Hydrogeomorphic Properties of Aland Chai Basin to Prioritize Sub-Basins in terms of Flood Sensitivity. Journal of Geography and Environmental Hazards, 9(1), 61-83. doi: 10.22067/geo.v9i1.84675 [in persian]
  34. Rezaei Moghaddam. M. H., & Rahimpour. T., (2025). Application of Multi-Criteria Decision Making Methods in Environmental Hazards Modeling. University of Tabriz, 210 Pages. [in persian]
  35. Rezaei Moghaddam. M. H., & Rahimpour. T., (2025). Evaluation and Zoning of Flood Hazard in the Aji Chai Basin Using the Multi-Criteria Decision-Making Technique and a Statistical Method (SI). JWatershed Manage Res, 16(1), 27-42. DOI: 10.61186/jwmr.2024.1265 [in persian]
  36. Rezai Moghadam, M.H., Mokhtari, D., & Samandar, N. (2019). Modeling Mass Movements and Managing Areas Sensitive to These Movements, Using Statistical Algorithms and Neural Networks (Case Study: Ojanchay River Basin). Geography and Development, 63. 147-174. doi:10.22111/j10.22111.2021.6190 [in persian]
  37. Roostaei, S., Khodaei Geshlag, L., & Khodaei Geshlag, F. (2014). Assessment of Analysis Network Process and Heuristic Method in the Investigation of Landslide Potential in the Axis Range and Reservoir Dams (Case Study: Ghalea Chai Dam). Physical Geography Research, 46(4), 495-508. doi: 10.22059/jphgr.2014.53000[In Persian]
  38. Roy, C., & Sidle, H. (2006). Landslides; processes, prediction, and land use, American Geophysical union.
  39. Sakar, S., Kanungo, D.P., & Mehrotar, G.S. (1995). Landslide Zonation: A Case Study in Garhwal Himalaya, India. Mountain Research and Development, 15 (4), 301-309. https://www.researchgate.net/publication/257650539_Landslide_hazard_zonation_A_case_study_in_Garhwal_Himalaya_India
  40. Samandar, N. (2011). Evaluation of the Effect of Hydrogeomorphological Changes on Surface and Groundwater Flow of Ojanchai Watershed Using the Semi-Distributed SWAT Model. PhD Thesis, University of Tabriz, Tabriz .[In Persian]
  41. Samandar, N., & Hejazi, S.A. (2019). Performance Evaluation of Logistic Regression Statistical Methods and Multilayer Perceptron Neural Network in Predicting the Occurrence of Mass Movements (Upper Kamanjchai Watershed). Geographical Space, 66, 77-97.  [In Persian]
  42. Sasanpour, F., Mohebbi, F., & Kazem, A. (2011). Analysis and Zoning of Flood Hazard (Case Study: Taleghan Watershed). Sepehr Geographic Information, 119, 159-173. https://doi.org/10.22131/sepehr.2021.247892 [In Persian]
  43. Tesfa, C., & Sewnet, D. (2024). GIS-based MCDM approach for landslide hazard zonation mapping in east Gojjam zone, central Ethiopia. Quaternary Science Advances, 15, 100210.
  44. Van Westen, C.J., Asch, T.W.J., & Soeters. R. (2006). Landslide hazard and risk zonation- why is it still so difficult. Geology, 65, 67- 184. doi:10.1007/s10064-005-0023-0
  45. Varnes D. J. (1984). Landslide Hazard Zonation: a review of Princtice and practice: UNESCO Press, Paris, 176 .
  46. Zandi, I., Pahlavani, P., & Bigdali, B. (2022). Optimal ranking of hospital candidate sites using a combination of objective weighting methods and multi-criteria decision making based on geographic information systems. Land Planning, 1, 347-369. doi: 10.22059/jtcp.2021.327203.670238 [In Persian]
  47. Zavadskas, E. K., & Vilutiene, T. (2006). A multiple criteria evaluation of multi-family apartment block’s maintenance contractors: I-model for maintenance contractor evaluation and the determination of its selection criteria. Building and Environment .41(5), 621–632. https://doi.org/10.1016/j.buildenv.2005.02.019