تحلیل بی‌هنجاری‌های گردش‌های جوی تراز 500 هکتوپاسکال و تأثیر آن بر دوره‌های خشک و تر در ایران (1995-2024)

نوع مقاله : مقاله کامل

نویسنده

گروه پیش‌آگاهی مخاطرات جوی، پژوهشکده هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

10.22059/jphgr.2025.403917.1007903

چکیده

این مطالعه به بررسی بی‌هنجاری‌های گردش‌های جوی در تراز ۵۰۰ هکتوپاسکال و تأثیر آن بر دوره‌های خشک و تر ایران طی سال‌های ۱۹۹۵ تا ۲۰۲۴ و ارتباط تغییرات بارش با شاخص ENSO-Modoki می‌پردازد. با تلفیق داده‌های بارش ۱۷۹ ایستگاه و میدان ژئو پتانسیل بازتحلیل، دوره‌های خشک و تر شناسایی و میانگین ترکیبی بی‌هنجاری‌ها محاسبه شد. نتایج نشان داد بیشترین سهم بارش سالانه مربوط به ماه‌های ژانویه، فوریه، مارس، آوریل و دسامبر است. روند بارش در اغلب ماه‌ها کاهشی بوده و بیشترین کاهش در دسامبر، ژانویه و مارس رخ‌داده که تهدیدی جدی برای منابع آب کشور محسوب می‌شود. تحلیل درصد تغییرات ماهانه بارش نشان داد در برخی سال‌ها نوسانات بسیار شدیدی رخ‌داده است؛ به‌گونه‌ای که افزایش‌هایی بیش از ۱۰۰ درصد (مارس ۱۹۹۶ با ۱۳۶+ درصد و دسامبر ۲۰۰۴ با ۱۴۳+ درصد) و کاهش‌هایی بیش از ۸۰ درصد (ژانویه ۲۰۲۱ با ۸۷- درصد و مارس ۲۰۰۸ با ۸۹- درصد) ثبت شد. این نوسانات عمدتاً ناشی از تغییر در الگوهای جوی، به‌ویژه ناوه‌های تراز میانی وردسپهر است. بی‌هنجاری‌های ارتفاع تراز ۵۰۰ هکتوپاسکال نشان داد در دوره‌های خشک و تر، الگوهای جوی نواحی اقیانوس آرام شمالی، اطلس شمالی، اروپا و غرب روسیه رفتار مشخصی دارند؛ به‌گونه‌ای که بی‌هنجاری‌های منفی (مثبت) در این مناطق با دوره‌های خشک (تر) ایران همراه است. همبستگی مثبت و معنادار سالانه میان انسو - مودوکی و بارش کل کشور (51/0≈ r) و همبستگی منفی قوی میان ارتفاع ۵۰۰ هکتوپاسکال اقیانوس‌ها و بارش ایران نشان داد که ترکیب شاخص‌های دور پیوندی با تحلیل‌های تراز میانی جو می‌تواند مهارت پیش‌بینی فصلی را بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of 500 hPa Geopotential Anomalies and Their Impact on Dry and Wet Periods in Iran (1995-2024)

نویسنده [English]

  • Abbas RanjbarSaadatabadi
Department of Meteorolog, Atmospheric Science and Meteorological Research Center, Tehran, Iran
چکیده [English]

ABSTRACT
This study examines anomalies in 500 hPa atmospheric circulation and their influence on wet and dry periods in Iran during 1995–2024, with particular attention to the relationship between precipitation variability and the ENSO-Modoki index. Rainfall observations from 179 stations were integrated with reanalysis-based geopotential height fields to identify dry and wet periods and to construct composite anomaly patterns. The results indicate that the highest levels of annual precipitation occur in January, February, March, April, and December. A declining precipitation trend is observed in most months, with the most pronounced reductions occurring in December, January, and March, which poses a serious challenge to national water resources. Analysis of monthly precipitation changes reveals substantial interannual variability, including increases exceeding 100 percent (March 1996: +136 percent; December 2004: +143 percent) and decreases greater than 80 percent (January 2021: −87 percent; March 2008: −89 percent). These fluctuations are primarily associated with changes in large-scale atmospheric circulation patterns, particularly the configuration of mid-tropospheric troughs. Analysis of 500 hPa geopotential height anomalies indicates that circulation patterns over the North Pacific, North Atlantic, Europe, and western Russia exhibit distinct configurations during dry and wet periods, whereby negative anomalies are associated with dry conditions and positive anomalies with wet conditions in Iran. A statistically significant positive annual correlation is identified between the ENSO-Modoki index and national precipitation (r ≈ 0.51), accompanied by strong negative correlations between 500 hPa geopotential heights over major oceanic regions and precipitation across Iran. These findings suggest that the integration of emerging teleconnection indices.
Extended Abstract
Introduction
Climate variability and climate change pose significant challenges for societies that are highly dependent on water resources, agricultural systems, and environmentally sensitive ecosystems. Iran, situated within the arid and semi-arid belt of the Middle East, is particularly vulnerable to variability in precipitation patterns. Large areas of the country receive less than 250 mm of annual precipitation, rendering these regions highly sensitive to even minor changes in atmospheric circulation patterns. Over recent decades, both the frequency and intensity of drought events have increased markedly, placing substantial pressure on agricultural productivity, groundwater resources, food security, and socio-economic stability. Accordingly, a comprehensive understanding of the atmospheric mechanisms governing precipitation variability is essential for sustainable water and resource management.
Among the principal indicators of large-scale atmospheric circulation, anomalies in 500 hPa geopotential heights serve as robust diagnostic tools for identifying synoptic-scale patterns associated with wet and dry periods. These anomalies reflect the dynamics of mid-tropospheric troughs, ridges, and jet streams, which play a central role in regulating moisture transport pathways and the spatial distribution of precipitation over Iran. Furthermore, the ENSO–Modoki index has emerged as an important teleconnection indicator influencing precipitation variability across the Middle East, underscoring the need to integrate mid-tropospheric diagnostics with large-scale teleconnection indices for more robust hydroclimatic assessments.
 
Methodology
This study integrates long-term precipitation observations with large-scale atmospheric reanalysis data to examine monthly precipitation variability over Iran during the period 1995–2024. Monthly precipitation data from 179 synoptic stations were compiled, and the spatial mean across all stations was calculated for each month to derive a national precipitation index. Monthly climatological means for the WMO reference period (1991–2020) were calculated and used to derive precipitation anomalies and corresponding percentage changes.
Temporal variability was assessed using simple linear regression to estimate trends, standard errors, and coefficients of determination, while the statistical significance of these trends was evaluated using the Mann–Kendall test. A ranked series of monthly percentage changes was used to identify the driest and wettest months, defined respectively as the seven lowest and seven highest values.
Atmospheric circulation patterns were analyzed using monthly 500 hPa geopotential height fields derived from the NCEP/NCAR reanalysis dataset. This pressure level was selected because it represents mid-tropospheric flow patterns that govern the major synoptic systems influencing Iran. Composite anomaly maps were constructed for dry and wet months to assess shifts in the intensity and spatial configuration of large-scale circulation features. In addition, multi-month composites for the October to May period were generated to highlight dominant dynamical signals.
To investigate large-scale teleconnections, correlation analyses were conducted between precipitation, the ENSO–Modoki Index (EMI), and geopotential height anomalies over four key regions identified from spatial patterns of anomalous circulation, namely the North Pacific, North Atlantic, Europe, and western Russia. Together, these analyses provide a coherent framework for understanding the atmospheric drivers that shape precipitation variability across Iran.
 
Results and Discussion
The analysis indicates a strong linkage between mid-tropospheric circulation anomalies and precipitation variability across Iran. During dry periods, subtropical high-pressure systems intensify while Mediterranean troughs weaken, leading to the formation of persistent anticyclonic ridges over the Middle East that inhibit the eastward propagation of mid-latitude cyclones. As a result, large-scale subsidence dominates, convective activity is suppressed, and widespread precipitation deficits occur. In contrast, wet periods are associated with deepened troughs and strengthened westerly flow, which facilitate the intrusion of moisture-bearing systems from the Mediterranean and Red Seas and result in more frequent and intense precipitation events.
The results further indicate that El Niño–Modoki phases, through the development of warm sea surface temperature anomalies in the central Pacific, modify subtropical pressure distributions, deepen the Mediterranean trough, and enhance the propagation of Rossby waves toward Iran, thereby creating favorable conditions for increased precipitation. Conversely, La Niña–Modoki conditions strengthen subtropical ridges and reduce moisture transport toward the region, a pattern that is closely associated with dry periods. Composite analyses reveal that 500 hPa geopotential height anomalies over the North Pacific and North Atlantic function as key centers that modulate Rossby wave patterns, thereby exerting a strong influence on precipitation variability over Iran.
Sub-monthly precipitation fluctuations are largely driven by baroclinic wave activity associated with horizontal temperature gradients, whereas intraseasonal variability is primarily controlled by the modulation of mid-latitude Rossby waves. Teleconnection patterns indicate that circulation anomalies in the North Pacific and Eurasian sectors strongly influence the intensity and eastward extension of the Mediterranean trough, thereby regulating moisture transport toward Iran. Trend analysis further demonstrates significant long-term declines in winter precipitation, particularly during December, January, and March, suggesting an increasing risk of prolonged droughts, reduced snowpack accumulation, and declining groundwater recharge.
 
Conclusion
This study demonstrates that precipitation variability in Iran is closely linked to mid-tropospheric circulation patterns at the 500 hPa level. The prevalence of anticyclonic ridges during dry months and intensified troughs during wet months underscores the central role of mid-tropospheric dynamics in shaping hydroclimatic extremes. ENSO–Modoki teleconnections modulate these circulation patterns by altering subtropical pressure distributions and Rossby wave propagation, with El Niño–Modoki favoring wet conditions and La Niña–Modoki reinforcing dry conditions. Integrated analyses confirm that both 500 hPa geopotential height anomalies and the ENSO–Modoki index play critical roles in explaining and predicting precipitation variability, with mid-tropospheric anomalies acting as intermediaries that transmit Modoki-related influences to the Mediterranean and Iranian regions.
These findings underscore the value of combining reanalysis-based mid-tropospheric diagnostics with large-scale teleconnection indices to improve the skill of seasonal precipitation forecasts. Future studies are encouraged to employ higher-resolution reanalysis datasets and numerical modeling approaches to deepen mechanistic understanding and further enhance predictive capability.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Atmospheric circulation anomalies
  • Precipitation variability
  • dry–wetness episodes
  • Iran
  1. احمدی گیوی، فرهنگ و پرهیزکار، داود. (1387). بررسی نقش انسو در بارش سالانه ایران در دوره 1971-2000. مجله ژئوفیزیک ایران، 2(2)، 25-37.
  2. آزیتا امیری، آزیتا؛ علیجانی، بهلول و ابراهیم، فتاحی. (1400). شناسایی کانون‌های فعالیت تاوایی نسبی تراز 500 هکتوپاسکال مؤثر بر بارندگی در ایران. نشریه پژوهش های اقلیمی، 1400(46)، 17-28.
  3. ایران‌نژاد، پرویز. احمدی گیوی، فرهنگ و محمدنژاد، علیرضا. (1388). اثر مراکز چرخندزای مدیترانه بر بارش سالانه ایران در دورة 1960 تا 2002.  ژئوفیزیک ایران، 1، 91-105.
  4. خوش‌اخلاق، فرامرز؛ قائمی، هوشنگ و زاهدی، مجید. (1376). بررسی الگوهای ماهانه خشکسالی و ترسالی در ایران، تحقیقات جغرافیایی، 45، 154-136.
  5. خوش‌اخلاق، فرامرز؛ عزیزی، قاسم و رحیمی، مجتبی. (1391). الگوهای همدید خشکسالی و ترسالی زمستانه در جنـوب غـرب ایـران. تحقیقات کاربردی علوم جغرافیایی، 25، 57-77.
  6. رضیی، طیب؛ عزیزی، قاسم. محمدی، حسین و  خوش‌اخلاق ، فرامرز. (1389). الگوهای روزانه گردش جوی زمستانه تراز 500 هکتوپاسکال بر روی ایران و خاورمیانه. پژوهش های جغرافیای طبیعی، 42(4)، .34-17.
  7. رضیئی، طیب؛ مفیدی، عباس و آذر زرّین، آذر. (1388). مراکز فعالیت و الگوهای گردش جو زمستانه تراز 500 هکتوپاسکال روی خاورمیانه و ارتباط آنها با بارش ایران، نشریه فیزیک زمین و فضا، 35(1)، 121-141.
  8. رنجبر سعادت‌آبادی، عباس؛ اسدی تلوکی، احمد و مرادی، محمد. (1392). تأثیر ناهنجاری‌های ماهانه الگوهای فشاری بر شـرایط بارشـی پاییزه در سواحل شمالی ایران. نشریه فیزیک زمین و فضا، 35، 121-141.
  9. صادقی، سلیمان؛ علیجانی، بهلول؛ سلیقه، محمد؛ حبیبی نوخندان، مجید و قهرودی تالی، منیژه. (1387). تحلیل همدیدی واچرخندها بر خشکسالی‌های فراگیر خراسان، مجلۀ جغرافیا و توسعۀ ناحیه‌ای، 10،  105-118.
  10. طلوعی، یوسف؛ گندمکار، امیر و باقری بداغ‌آبادی، محسن. (1400). طلوعی بررسی رابطه بین الگوهای پیوند از دور نیمکره شمالی با خشکسالی‌های شمال غرب ایران. فصلنامه جغرافیای طبیعی، 13(51)، 74-55.
  11. علیجانی، بهلول؛ رضایی، محمد؛ جعفری، فرزانه و  پژوه، فرشاد. (1394)، تغییرپذیری ارتفاع ژئو پتانسیل تراز 500 هکتوپاسکال و نقش آن در نوسانات دمای ماه ژانویه‌ی ایران. مطالعات جغرافیایی مناطق خشک. 6(20)، 34-45.
  12. علی‌پور، یوسف؛ حجازی‌زاده، زهرا؛ اکبری، مهری و سلیقه، محمد. (1397). بررسی تغییرات پرفشار جنب حاره تراز 500 هکتوپاسکال نیوار ایران با رویکرد تغییر اقلیم،  فصلنامه مخاطرات محیط طبیعی، 7(18)، 1-16.
  13. علیزاده، تیمور؛ عزیزی، قاسم و روستا، ایمان. (1391).  واکاوی الگوهای گردشی تراز 500 هکتوپاسکال جو هنگام رخداد بارش‌های فراگیر و غیر‌فراگیر در ایران.  نشریه آمایش فضا و ژئوماتیک،16(4)، 1-24.
  14. غلامی رستم، مهدی؛ ساداتی‌نژاد، سید جواد و ملکیان، آرش. (1397).  بررسی مطالعات انجام شده درباره تأثیر الگوهای دور پیوندی بر اقلیم ایران (1397-1383). مجله علمی و ترویجی نیوار، 103-102، 88-73.
  15. فرج‌زاده اصل، منوچهر؛ احمدی، محمد؛ علیجانی، بهلول؛ قویدل رحیمی، یوسف؛ مفیدی، عباس و  بابائیان، ایمان، (1392). بررسی وردایی الگوهای پیوند از دور و اثر آن‌ها بر بارش ایران. پژوهشهای اقلیم‌شناسی، 15، 31-45.
  16. محمودی، پیمان. طاوسی، تقی. و کردی تمندانی، صابره. (1401).  شناسایی الگوهای ناهنجاری‌های همدیدی منجر به خشکسالی‌ها و ترسالی‌های فراگیر ایران. پژوهشهای جغرافیای طبیعی، 54(1)، 1-20.  Doi:10.22059/JPHGR.2022.267431.1007286
  17. موسوی بایگی، محمد. و اشرف، بتول، (1390). مطالعه الگوهای سینوپتیکی منجر به خشکسالی‌هـای پـاییزه و زمسـتانه در اسـتان خراسان رضوی. مجله پژوهشهای حفاظت آب و خاک، 4. 167-184.
  18. Ahrens, C. D. (2011). Essentials of meteorology: An invitation to the atmosphere. Brooks/Cole
  19. Araźny, A., Bartczak, A., Maszewski, R., et al. (2021). The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954–2018. Theor Appl Climatol 146, 1079–1095. https://doi.org/10.1007/s00704-021-03780-0
  20. Ashok, K., Behera, S. K.,  Rao, S. A., Weng, H., & Yamagata, T.  (2007). El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798. https://doi.org/10.1029/2006JC003798
  21. Bahrami, F., Ranjbar Saadatabadi, A., Meshkatee, A. M., & Kamali, Gh. (2020). Autumn rainfall anomalies and regional atmospheric circulation along establishment of weak La Nina after strong El Nino in Iran. Iranian Journal of Geophysics, 13(4), 1–15. doi: 10.30499/ijg.2020.104779
  22. Caloiero, T., & Coscarelli, R. (2020). Analysis of the characteristics of dry and wet spells in a Mediterranean region. Environ. Process., 7, 691–701. https://doi.org/10.1007/s40710-020-00454-3
  23. Fall, C. M. N., Lavaysse, C., Drame, M. S., Panthou, G., & Gaye, A. T. (2021). Wet and dry spells in Senegal: Comparison of detection based on satellite products, reanalysis, and in situ estimates. Nat. Hazards Earth Syst. Sci., 21, 1051–1069. https://doi.org/10.5194/nhess-21-1051-2021
  24. Gibson, P-B., Waliser, D-E., Guan, B., Deflorio, M-J., Ralph, F-M. & Swain, D-L., (2019). Ridging associated with drought across the Western and Southwestern United States: characteristics, trends and predictability sources J. Clim. 33, 2485-508. doi: https://doi.org/10.1175/JCLI-D-19-0439.1
  25. Jamshidi Khezeli, T., Ranjbar Saadat Abadi, A., Nasr-Esfahany, M. A., Tajbakhsh Mosalman, S., & Mohebalhojeh, A. R. (2022). Autumn and Winter Extreme Precipitation Events and their Relationship with ENSO, NAO and MJO Phases over the West of Iran. Journal of the Earth and Space Physics, 47(4), 201-218. doi:  10.22059/jesphys.2021.316961.1007280
  26. Li, X., Meshgi, A., & Babovic, V. (2016). Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol., 36, 4831–4846. https://doi.org/10.1002/joc.4672
  27. Li, Z., Li, Y., Shi, X., & Li, J. (2017). The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change, 149, 14–19. https://doi.org/10.1016/j.gloplacha.2016.12.015
  28. Mahbod, M., Mashayekhi, S., Rafiee, MR. & Parnian, A. (2023). Spatio‐temporal variations of wet and dry spells in Iran and their association with large‐scale climatic indices. International Journal of Climatology 43 (6), 2754-2775. https://doi.org/10.1002/joc.8000
  29. Mahmoudi, P., Amir Jahanshahi, S., Daneshmand, N., et al. (2021). Spatial and temporal analysis of mean and frequency variations of dry spells in Iran. Arab J Geosci, 14, 478. https://doi.org/10.1007/s12517-021-06861-6
  30. Motamedi, A., Gohari, A., & Haghighi, A. T. (2023). Three-decade assessment of dry and wet spells change across Iran, a fingerprint of climate change. Sci Rep, 13, 2888. https://doi.org/10.1038/s41598-023-20040-0
  31. Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Change, 4, 456–461. https://doi.org/10.1038/nclimate2208
  32. Su, B., Huang, J., Fischer, T., Wang, Y., Kundzewicz, Z-W., Zhai, J., Sun, H., Wang, A., Zeng, X. & Wang, G. (2018). Drought losses in China might double between the 1.5 C and 2.0 C warming Proc. Natl Acad. Sci. 115 10600–5. https://doi.org/10.1073/pnas.1802129115
  33. Swain, D., Horton, D., Singh, D., & Diffenbaugh, N. (2016). Trends in atmospheric patterns conducive to seasonal precipitation andtemperature extremes in California. Science Advances, 2(4), e1501344. https://doi.org/10.1126/sciadv.1501344S
  34. Swain, D. L., Singh, D., Horton, D. E., Mankin, J. S., Ballard, T. C., & Diffenbaugh, N. S. (2017). Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. Journal of Geophysical Research: Atmospheres, 122, 12,194–12,209. https://doi.org/10.1002/2017JD026575
  35. Yang, S., Li, Z., Yi, J-Y., Hu, X., Dong, W. & He, S. (2018). El Niño–Southern Oscillation and its impact in the changing climate, National Science Review, 5(6). 840–857, https://doi.org/10.1093/nsr/nwy046
  36. Zolina, O., Simmer, C., Belyaev, K., Gulev, S. K., & Koltermann, P. (2013). Changes in the duration of Europeean wet and dry spells during the last 60 years. J. Clim., 26, 2022–2047. https://doi.org/10.1175/JCLI-D-11-00498.1
  37. Ahmadi-Givi, F., & Farhang, P. (2009). The role of ENSO in annual precipitation variability of Iran during 1971–2000. Iranian Journal of Geophysics, 2(2), 25–37. [In Persian]
  38. Amiri, A., Alijani, B., & Fattahi, E. (2021). Identification of relative vorticity activity centers at the 500 hPa level affecting precipitation in Iran. Climatic Research Journal, 46, 17–28. [In Persian]
  39. Irannajad, P., Ahmadi-Givi, F., & Mohammadzadeh, A. (2009). Effects of Mediterranean cyclogenetic centers on annual precipitation of Iran during 1960–2002. Iranian Journal of Geophysics, 1, 91–105. [In Persian]
  40. Khosh Akhlagh, F., Ghaemi, H., & Zahedi, M. (1997). Analysis of monthly drought and wetness patterns in Iran. Geographical Research, 45, 136–154. [In Persian]
  41. Khosh Akhlagh, F., Azizi, G., & Rahimi, M. (2012). Synoptic patterns of winter drought and wet periods in southwest Iran. Applied Research of Geographical Sciences, 25, 57–77. [In Persian]
  42. Raziei, T., Azizi, G., Mohammadi, H., & Khosh Akhlagh, F. (2010). Daily circulation patterns of wintertime 500 hPa level over Iran and the Middle East. Natural Geography Research, 42(4), 17–34. [In Persian]
  43. Raziei, T., Mofidi, A., & Azar-Zarrin, A. (2009). Centers of action and wintertime atmospheric circulation patterns at the 500 hPa level over the Middle East and their relationship with precipitation in Iran. Journal of Earth and Space Physics, 35(1), 121–141. [In Persian]
  44. Ranjbar Saadatabadi, A., Asadi Telouki, A., & Moradi, M. (2013). Effects of monthly pressure pattern anomalies on autumn precipitation conditions along the northern coasts of Iran. Journal of Earth and Space Physics, 35, 121–141. [In Persian]
  45. Sadeghi, S., Alijani, B., Saligheh, M., Habibi Nokhandan, M., & Gharoudi Tali, M. (2008). Synoptic analysis of anticyclones associated with widespread droughts in Khorasan. Journal of Regional Geography and Development, 10, 105–118. [In Persian]
  46. Tolouei, Y., Gandamkar, A., & Bagheri Badagh Abadi, M. (2021). Relationship between Northern Hemisphere teleconnection patterns and droughts in northwestern Iran. Quarterly Journal of Physical Geography, 13(51), 55–74. [In Persian]
  47. Alijani, B., Rezaei, M., Jafari, F., & Pajouh, F. (2015). Variability of geopotential height at the 500 hPa level and its role in January temperature fluctuations in Iran. Journal of Arid Regions Geographic Studies, 6(20), 34–45. [In Persian]
  48. Alipour, Y., Hejazi-Zadeh, Z., Akbari, M., & Saligheh, M. (2018). Variations of the subtropical high-pressure system at the 500 hPa level over Iran under climate change conditions. Journal of Natural Environmental Hazards, 7(18), 1–16. [In Persian]
  49. Alizadeh, T., Azizi, G., & Rusta, I. (2012). Analysis of atmospheric circulation patterns at the 500 hPa level during widespread and non-widespread precipitation events in Iran. Journal of Spatial Planning and Geomatics, 16(4), 1–24. [In Persian]
  50. Gholami Rostam, M., Sadati-Nejad, S. J., & Melikian, A. (2018). Review of studies on the impacts of teleconnection patterns on Iran’s climate (2004–2018). Nivar Scientific-Promotional Journal, 88–73. [In Persian]
  51. Farajzadeh Asl, M., Ahmadi, M., Alijani, B., Ghoveydil Rahimi, Y., Mofidi, A., & Babaeian, I. (2013). Variability of teleconnection patterns and their impacts on precipitation over Iran. Climatological Research, 15, 31–45. [In Persian]
  52. Mahmoudi, P., Tavousi, T., & Kordi Tamandani, S. (2022). Identification of synoptic anomaly patterns leading to widespread droughts and wet periods in Iran. Natural Geography Research, 54(1), 1–20. Doi:10.22059/JPHGR.2022.267431.1007286. [In Persian]
  53. Mousavi Baygi, M., & Ashraf, B. (2011). Synoptic patterns leading to autumn and winter droughts in Khorasan Razavi Province. Journal of Water and Soil Conservation Research, 4, 167–184. [In Persian]