تهیه نقشه حساسیت سیل در حوزه شهری اقلید با استفاده از الگوریتم‌های یادگیری ماشینی

نوع مقاله : مقاله کامل

نویسندگان

1 گروه جغرافیا، دانشکده اقتصاد،مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران

2 گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل. ایران

10.22059/jphgr.2025.406510.1007909

چکیده

سیل از جمله بلایای طبیعی است که هر ساله خسارات مالی و جانی زیادی را در سراسر جهان به بار می‌آورد. با تهیه نقشه خطر سیل و تعیین مناطق مستعد سیل، می‌توان خسارات احتمالی این پدیده را کاهش داد. برای تهیه نقشه حساسیت سیل در حوزه شهری اقلید (استان فارس) عوامل مؤثر بر وقوع سیل شامل شیب، شاخص تابش خورشیدی، شاخص موقعیت توپوگرافی، شاخص قدرت جریان، فاصله از رودخانه، تراکم زهکشی، انحنای سطح، بارندگی، شاخص پوشش گیاهی، سنگ­شناسی، کاربری اراضی و نوع خاک استفاده شد. سپس، برای تهیه نقشه خطر سیل، از الگوریتم جنگل تصادفی (RF) و ماشین بردار پشتیبان (SVM) به‌عنوان دو مدل یادگیری ماشین در نرم­افزار R پیاده‌سازی و نتایج آنها با هم مقایسه شده است. مدل‌های RF و SVM بر اساس منحنی ROC به ترتیب با دقت (83/0 و 84/0) اعتبارسنجی شده‌اند که هر دو عملکرد خوب و تقریباً یکسانی داشته‌اند. با تحلیل اهمیت ویژگی‌های لایه‌ها در مدل RF مشخص شد که مؤلفه‌های بارندگی، خاک، کاربری اراضی و تراکم زهکشی بیش‌ترین تأثیر را بر خطر سیل دارند؛ همچنین در مدل SVM، بارندگی، شیب، خاک و تراکم زهکشی به ترتیب مهم‌ترین متغیرها برای پیش‌بینی خطر سیل شناخته شدند. نقشه­ها و داده­های حاصل از این مطالعه می­توانند به مسئولین و مدیران شهری به‌عنوان ابزارهای کلیدی برای برنامه­ریزی­های پیشگیرانه، آگاه­سازی عمومی و طراحی زیرساخت­های مقاوم در برابر سیل کمک کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparing a flood sensitivity map in the Eghlid urban basin using machine learning algorithms

نویسندگان [English]

  • Saeed Negahban 1
  • Mehri Marhamat 2
1 Department of Geography, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
2 Department of Physical Geography, Faculty of Social Sciences, Mohaghegh Ardabili University, Ardabil, Iran
چکیده [English]

ABSTRACT
Flooding is among the most destructive natural hazards, causing substantial human casualties and economic losses worldwide each year. The preparation of flood risk maps and the identification of flood-prone areas play a critical role in reducing the potential damages associated with flooding. In this study, a flood sensitivity map was developed for the urban watershed of Eqlid in Fars Province using a range of flood conditioning factors, including slope, TRASP, topographic position index, stream power index, distance from the river, drainage density, surface curvature, rainfall, normalized difference vegetation index (NDVI), geology, land use, and soil type. Spatial data processing and factor preparation were conducted using ArcGIS Pro software. Subsequently, flood risk maps were generated using Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms implemented in the R programming environment, and the results of the two models were systematically compared. Model performance was evaluated using the receiver operating characteristic (ROC) curve, yielding accuracy values of 0.83 for the RF model and 0.84 for the SVM model, indicating good and nearly equivalent predictive performance. Feature importance analysis revealed that rainfall, soil type, land use, and drainage density were the most influential factors in the RF model, while rainfall, slope, soil type, and drainage density were identified as the dominant variables in the SVM model. The maps and datasets produced in this study can serve as valuable tools for urban planners and decision-makers in preventive planning, enhancing public awareness, and designing flood-resilient infrastructure.
Extended Abstract
Introduction
Flooding is one of the major natural hazards resulting from heavy rainfall, river overflows, and tidal influences. In recent years, increasing urbanization and climate change have intensified flood occurrences, particularly urban flooding, across many regions of the world. This phenomenon poses substantial social and economic risks, making accurate flood prediction essential for minimizing potential damages. Recent methodological advances, particularly in machine learning, have significantly enhanced the accuracy of flood hazard prediction. In this study, a flood hazard zoning map was developed for the urban watershed of Eqlid using advanced machine learning algorithms, namely Random Forest and Support Vector Machine. This approach integrates multi-source spatial data to support a comprehensive flood risk management strategy, with the potential to reduce damages associated with urban flooding.
 
Methodology
The study area covers approximately 40/623 hectares and has an elevation range from 1234 to 3213 meters above sea level, located in the southern part of Iran. Geographically, the watershed is located between 52°24'0" and 52°52'0" East longitude and between 30°43'40" and 31°4'20" North latitude. Initially, a flood point inventory map was prepared using 150 points, including both flood occurrence and non-occurrence locations, identified through field surveys, topographic maps, and data obtained from the General Directorate of Natural Resources of Fars Province. Additionally, 15 variables were selected for modeling based on methodologies commonly adopted in previous studies. These variables include elevation, slope, TRASP, drainage density, distance from the river, land use, geology, soil texture, Stream Power Index (SPI), Topographic Wetness Index (TWI), Topographic Roughness Index (TRI), Topographic Position Index (TPI), average annual rainfall, and the Normalized Difference Vegetation Index (NDVI). Multicollinearity among the selected variables was assessed using the Variance Inflation Factor (VIF) to identify potential linear correlations. Subsequently, machine learning algorithms, namely Random Forest (RF) and Support Vector Machine (SVM), were employed for flood hazard modeling. Finally, model performance was evaluated using statistical indices, including Accuracy, Sensitivity, Specificity, and the Kappa coefficient, in addition to the receiver operating characteristic (ROC) curve.
 
Results and discussion
Examining multicollinearity among the selected variables is essential for the reliable production of flood sensitivity maps. Among the 15 selected variables, elevation, TWI, and TRI were excluded because of high VIF values. The flood sensitivity maps indicate that areas with low to moderate susceptibility are predominantly located in the northern, northwestern, and southwestern parts of the watershed, whereas zones with high flood susceptibility are mainly concentrated in the central area.
Model performance evaluation showed that Sensitivity values for the training dataset were 0.93 for the RF model and 0.84 for the SVM model, while corresponding values for the validation dataset were 0.86 and 0.80, respectively. Specificity values reached 0.94 for RF and 0.83 for SVM in the training phase, and 0.86 and 0.73 in the validation phase. Accuracy values were 0.94 for RF and 0.89 for SVM for the training data, and 0.73 and 0.77 for the validation data, respectively. In addition, Kappa coefficients were 0.86 for RF and 0.73 for SVM in the training dataset, decreasing to 0.75 and 0.63 in the validation dataset. The AUC values for the RF model were 99% for the training data and 83% for the testing data, while the SVM model achieved AUC values of 93% and 84%, respectively, indicating high predictive accuracy for both models.
The variable importance analysis revealed that rainfall, soil type, land use, slope, and drainage density are the primary factors influencing flood occurrence, each contributing significantly to flood hazard formation. Although rainfall intensity tends to increase at higher elevations, the accumulation of runoff in lower elevation areas significantly elevates flood risk in these zones. Aridisols soils, characterized by low permeability and calcareous structure, promote increased surface runoff and accelerate flood occurrence. Land use types such as urban areas, agricultural lands, and moderately vegetated zones contribute to intensified flooding as a result of increased impervious surfaces and reduced infiltration capacity. Gentle slopes reduce flow velocity and prolong water retention time, thereby increasing the likelihood of flooding. Although high drainage density can facilitate rapid water conveyance, it also concentrates runoff in downstream areas, potentially leading to sudden and destructive flood events.
These findings are consistent with previous studies and highlight the importance of considering the combined effects of natural and anthropogenic factors in urban planning and water resource management to mitigate flood hazards. Overall, the machine learning models employed in this study produced accurate and reliable flood hazard maps that can effectively support urban management decisions and contribute to reducing flood-related damages in the urban watershed of Eqlid.
 
Conclusion
In this study, advanced machine learning models, including Random Forest and Support Vector Machine, were employed to generate flood hazard potential maps for the urban watershed of Eqlid with a high level of accuracy. The findings indicate that the interaction of climatic, geological, and hydrological variables, together with land use changes and urbanization expansion, plays a fundamental role in flood occurrence. The proposed models demonstrated a strong capability to accurately predict flood sensitivity and to provide valuable information for decision-makers involved in flood damage reduction planning. However, certain limitations, including the focus on a single watershed and constraints related to data availability, should be taken into account in future research. Overall, this research emphasizes that the application of data-driven methods and modern modeling approaches, alongside scientific analyses, can serve as an effective strategy for reducing the destructive impacts of floods in urban areas and supporting policymakers in informed decision-making.
 
Funding
There is no funding support.
 
Authors’ Contribution
Conceptualization and formal analysis and initial methodology and investigation by S.Negahban.; project administration and supervision and visualization and software writing review and editing by M.Marhamat.;
 
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Flood Hazard Sensitivity Map
  • Machin Learning
  • Random Forest
  • Support Vector Machine
  • Arc GIS Pro
  1. امیری، ‌پویا؛ عفیفی، ‌محمد‌ابراهیم و موغلی، مرضیه. (1401). آینده‌پژوهی و پتانسیل سنجی خطر وقوع سیل در شهر تهران با استفاده از الگوریتم ماشین پشتیبان بردار SVM. جغرافیای طبیعی، 55(14)، 93-77. DOI: 20.1001.1.20085656.1401.15.55.5.7
  2. پورنبی درزی، سمیه؛ وفاخواه، مهدی و رجبی، محمد رسول. (1400). پهنه‌بندی خطر سیل با استفاده از مدل هیدرولیکی HEC- RAS و Arc GIS (مطالعه موردی: حوزه آبخیز چشمه کیله شهرستان تنکابن). مخاطرات محیط طبیعی،10(28)، 28-15. https://doi.org/10.22111/jneh.2021.28694.1603
  3. حنیفی نیا، عبدالعزیز و عبقری، هیراد. (1404). پیش‌‌بینی مناطق مستعد سیل با استفاده از مدل‌‌های یادگیری ماشین خطی تعمیم‌یافته و بیشینه آنتروپی. مخاطرات محیط طبیعی،14(43)، 34-12. https://doi.org/10.22111/jneh.2024.47730.2021
  4. رضایی، فاطمه؛ پور قاسمی، حمیدرضا؛ فلاح شمسی، سید رشید؛ خسروی شرف‌آبادی، رضا و  کریمی‌نژاد، نرگس. (1403). مدل‌سازی مکانی و تهیه نقشه پتانسیل سیل‌گیری با استفاده از الگوریتم‌های یادگیری ماشین (مطالعه موردی: استان بوشهر). مدیریت جامع حوزه‌های آبخیز، ۴(۲)، ۸۱-۹۶. https://doi.org/10.22034/iwm.2024.2014966.1113
  5. رضایی مقدم، محمدحسین و رحیم‌پور، توحید. (1402). تهیه نقشه پتانسیل خطر وقوع سیل با استفاده از دو روش نسبت فراوانی و شاخص آماری (مطالعه موردی: حوضه آبریز آجی چای). مدیریت مخاطرات محیطی، 10(4): 10.22059/jhsci.2024.369163.803
  6. علوی، سیدجلیل؛ احمدی، کوروش؛ حسینی، سید محسن؛ طبری، مسعود و نوری، زهرا. (1398). اهمیت متغیرهای اقلیمی، توپوگرافی و خاک در پراکنش سرخدار و اولویت‌بندی رویشگاه‌های مطلوب برای حفاظت و احیا در جنگل‌های خزری، مجله جنگل ایران. انجمن جنگل‌بانی ایران، 11(4)، 477-492.
  7. کرمی، پیمان؛ اسلامی نژاد، سید احمد؛ افتخاری، مبین؛اکبری، محمد و راستگو، ملیکا. (1402). پهنه‌بندی حساسیت سیلاب با استفاده از روش های یادگیری ماشین بهبود یافته توسط الگوریتم ژنتیک. محیط زیست طبیعی، 76(1)، 60-43.   http//doi. rg/10.22059/jne.2022.350170.2485
  8. میربابایی، سیده مهرنوش؛ شعبان پور شهرستانی، محمود؛ خالدیان، محمدرضا و ذوالفقاری، علی‌اصغر. (1400). بررسی رابطه بین آب‌گریزی طبیعی و ویژگی‌های فیزیک و شیمیایی خاک در کاربری‌های مختلف در مناطق ساحلی غرب گیلان. مجله تحقیقات آب‌وخاک ایران (مجله علوم کشاورزی ایران)، 52(7)، 1823-1807. https://doi.org/10.22059/ijswr.2021.323653.668972
  9. نادری، حامد. رستگار سرخه، محمدعلی. استادی، بختیار و کارگری، مهرداد. (1404). پیش بینی احتمال وقوع ریسک عملیاتی در صنعت بانک داری با استفاده از الگوریتم های یادگیری ماشینیمدیریت دارایی و تامین مالی، 13(4)، 77-96. https://doi.org/10.22108/amf.2025.143030.1929
  10. Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth's Future, 5(2), 171–182. https://doi.org/10.1002/2016EF000485
  11. Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M., & Nouri, Z. (2019). Importance of climatic, topographic, and soil variables in the distribution of Persian ironwood and prioritization of suitable habitats for conservation and restoration in the Caspian forests. Iranian Journal of Forest, 11(4), 477–492.  In Persian
  12. Amiri, P., Afifi, M. A., & Moghli, M. (2022). Foresight and potential assessment of flood risk in Tehran city using Support Vector Machine (SVM) algorithm. Journal of Natural Geography, 55(14), 77–93. DOI: 20.1001.1.20085656.1401.15.55.5.7 [In Persian]
  13. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., & Piccinni, A. F. (2016). Land use change impact on flooding areas: The case study of Cervaro Basin (Italy). Sustainability, 8(10), 996. https://doi.org/10.3390/su8100996
  14. Arabameri, A., Pradhan, B., Rezaei, Kh., & Conoscent, Ch. (2019). Gully erosion mapping using GIS-based multi-criteria decision analysis techniques. Catena, 180, 282–297. https://doi.org/10.1016/j.catena.2019.04.032
  15. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  16. Bui, D. T., Pradhan, B., Revhaug, I., Nguyen, D. B., Pham, H. V., & Bui, Q. N. (2015). A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk, 6(3), 243–271. https://doi.org/10.1080/19475705.2013.843206
  17. Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064
  18. Costache, R. (2019). Flood susceptibility assessment by using bivariate statistics and machine learning models—a useful tool for flood risk management. Water Resources Management, 33(9), 3239–3256. https://doi.org/10.1007/s11269-019-02301-z
  19. Dai, W., Tang, Y., Liao, N., Zou, S., & Cai, Z. (2024). Urban flood prediction using ensemble artificial neural network: An investigation on improving model uncertainty. Applied Water Science, 14(6), 144. https://doi.org/10.1007/s13201-024-02201-7
  20. Derue, D. S., Nahrgang, J. D., Wellman, N. E., & Humphrey, S. E. (2011). Trait and behavioral theories of leadership: An integration and meta‐analytic test of their relative validity. Personnel Psychology, 64(1), 7–52. https://doi.org/10.1111/j.1744-6570.2010.01201.x
  21. Duan, C., Zhang, J., Chen, Y., Lang, Q., Zhang, Y., Wu, C., & Zhang, Z. (2022). Comprehensive risk assessment of urban waterlogging disaster based on MCDA-GIS integration: The case study of Changchun, China. Remote Sensing, 14(13), 3101. https://doi.org/10.3390/rs14133101
  22. Ganjirad, M., & Delavar, M. R. (2023). Flood risk mapping using random forest and support vector machine. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 201–208. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-201-2023
  23. Hanifi Nia, A., & Abghari, H. (2025). Prediction of flood-prone areas using generalized linear models and maximum entropy. Natural Environmental Hazards, 14(43), 12–34. https://doi.org/10.22111/jneh.2024.47730.2021 In Persian
  24. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7
  25. Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034
  26. Karami, P., Eslami Nejad, S. A., Eftkhari, M., Akbari, M., & Rastgoo, M. (2023). [Flood susceptibility zoning using machine learning methods improved by genetic algorithm]. Natural Environment, 76(1), 43–60. http//doi.org/10.22059/jne.2022.350170.2485
  27. Koggalage, R., & Halgamuge, S. (2004). Reducing the number of training samples for fast support vector machine classification. *Neural Information Processing-Letters and Reviews, 2*(3), 57–65.
  28. Ma, M., Zhao, G., He, B., Li, Q., Dong, H., Wang, S., & Wang, Z. (2021). XGBoost-based method for flash flood risk assessment. Journal of Hydrology, 598, 126382. https://doi.org/10.1016/j.jhydrol.2021.126382
  29. Mirbabayi, S. M., Shabanpour Shahrastani, M., Khalidian, M. R., & Zolfaghari, A. A. (2021). [Investigation of the relationship between natural soil water repellency and physicochemical properties in different land uses in the coastal areas of western Gilan]. Iranian Journal of Soil and Water Research, 52(7), 1807–1823. https://doi.org/10.22059/ijswr.2021.323653.668972 In Persian
  30. Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, 590, 125275. https://doi.org/10.1016/j.jhydrol.2020.125275
  31. Naderi, H., Rastegar Sorkhe, M. A., Estadi, B., & Karagari, M. (2025). [Prediction of operational risk probability in the banking industry using machine learning algorithms]. Asset Management and Financing, 13(4), 77–96. https://doi.org/10.22108/amf.2025.143030.1929 In Persian
  32. Noymanee, J., Nikitin, N. O., & Kalyuzhnaya, A. V. (2017). Urban pluvial flood forecasting using open data with machine learning techniques in pattani basin. Procedia Computer Science, 119, 288–297. https://doi.org/10.1016/j.procs.2017.11.187
  33. Pallard, B., Castellarin, A., & Montanari, A. (2009). A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences, 13(7), 1019–1029. https://doi.org/10.5194/hess-13-1019-2009
  34. Pournabi Derazi, S., Vafakhvah, M., & Rajabi, M. R. (2021). [Flood hazard zoning using HEC-RAS hydraulic model and ArcGIS (Case study: Cheshmeh Kileh watershed, Tonekabon County)]. Natural Environmental Hazards, 10(28), 15–28. https://doi.org/10.22111/jneh.2021.28694.1603
  35. Qian, Y., Aghaabbasi, M., Ali, M., Alqurashi, M., Salah, B., Zainol, R., Moeinaddini, M., & Hussein, E. E. (2021). Classification of imbalanced travel mode choice to work data using adjustable SVM model. Applied Sciences, 11(24), 11916. https://doi.org/10.3390/app112411916
  36. Rafiei-Sardooi, E., Azareh, A., Choubin, B., Mosavi, A. H., & Clague, J. J. (2021). Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. International Journal of Disaster Risk Reduction, 66, 102614. https://doi.org/10.1016/j.ijdrr.2021.102614 In Persian
  37. Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559 In Persian
  38. Rezaei, F., Pourghasemi, H. R., Fallah Shamsi, S. R., Khosravi Sharafabadi, R., & Karimi Nejad, N. (2024). [Spatial modeling and flood potential mapping using machine learning algorithms (Case study: Bushehr Province)]. Watershed Management Research, 4(2), 81–96. https://doi.org/10.22034/iwm.2024.2014966.1113
  39. Rezaei Moghadam, M. H., & Rahimpour, T. (2023). [Flood hazard potential mapping using frequency ratio and statistical index methods (Case study: Ajichay watershed)]. Environmental Hazard Management, 10(4), 13–24. https://doi.org/10.22059/jhsci.2024.369163.803
  40. Rizal, H. M., Hariadi, M., Arif, Y. M., & Warni, E. (2025). Enhancing flood prediction in urban areas: A machine learning approach for Makassar City. Engineering, Technology & Applied Science Research, 15(2), 21678–21684. https://doi.org/10.48084/etasr
  41. Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8
  42. Schmidt, L., Heße, F., Attinger, S., & Kumar, R. (2020). Challenges in applying machine learning models for hydrological inference: A case study for flooding events across Germany. Water Resources Research, 56(5), e2019WR025924. https://doi.org/10.1029/2019WR025924
  43. Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. (2014). Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 1–12. https://doi.org/10.1016/j.catena.2013.11.014
  44. Smith, R. B. (1979). The influence of mountains on the atmosphere. Advances in Geophysics, 21, 87–230. https://doi.org/10.1016/S0065-2687(08)60262-9
  45. Svetnik, V., Liaw, A., Tong, C., & Wang, T. (2004). Application of Breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In F. Roli, J. Kittler, & T. Windeatt (Eds.), Multiple classifier systems (pp. 334–343). Springer. https://doi.org/10.1007/978-3-540-25966-4_33
  46. Tehrany, M. S., & Kumar, L. (2018). The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 77(13), 490. https://doi.org/10.1007/s12665-018-7667-0
  47. Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A., Veldkamp, T., von Uexkull, N., Wanders, N., AghaKouchak, A., Arnbjerg-Nielsen, K., Capewell, L., Coughlan de Perez, E., Dai, X., Day, R., Dewals, B., Di Baldassarre, G., Huning, L. S., Jupner, R., Kelman, I., … Wens, M. (2020). The need to integrate flood and drought disaster risk reduction strategies. Water Security, 11, 100070. https://doi.org/10.1016/j.wasec.2020.100070
  48. Xiao, S., Zou, L., Xia, J., Dong, Y., Yang, Z., & Yao, T. (2023). Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Science of the Total Environment, 866, 161321. https://doi.org/10.1016/j.scitotenv.2022.161321
  49. Xu, D., Qi, X., Li, C., Sheng, Z., & Huang, H. (2021). Wise information technology of med: Human pose recognition in elderly care. Sensors, 21(21), 7130. https://doi.org/10.3390/s21217130
  50. Yu, H., Luo, Z., Wang, L., Ding, X., & Wang, S. (2023). Improving the accuracy of flood susceptibility prediction by combining machine learning models and the expanded flood inventory data. Remote Sensing, 15(14), 3601. https://doi.org/10.3390/rs15143601
  51. Zhu, Z., & Zhang, Y. (2022). Flood disaster risk assessment based on random forest algorithm. Neural Computing and Applications, 34(5), 3443–3455. https://doi.org/10.1007/s00521-021-05757-