بررسی تطبیقی توزیع زمانی ـ مکانی تنش حرارتی به‌دست‌آمده از داده‌های بازتحلیل ERA5-Land با داده‌های مشاهداتی در ایران

نوع مقاله : مقاله کامل

نویسندگان

1 گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه پیش آگاهی مخاطرات جوی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 گروه فیزیک دریا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22059/jphgr.2025.400974.1007901

چکیده

آسایش حرارتی از مؤلفه‌های کلیدی در ارتقاء کیفیت زندگی، بهره‌وری انسانی و برنامه‌ریزی‌های محیطی و شهری است. در این پژوهش، کارایی داده‌های بازتحلیل ERA5-Land در شناسایی تنش‌های حرارتی با داده‌های مشاهداتی ایستگاه‌های همدید طی دوره 1991 تا 2020 مقایسه شد. برای این منظور، داده‌های روزانه دما، رطوبت و باد از هر دو منبع استخراج و شاخص‌های دمای مؤثر و بیکر محاسبه گردید. نتایج کلی نشان داد ERA5-Land در بازنمایی الگوهای فضایی و زمانی شاخص‌های حرارتی ایران، به‌ویژه در بهار و تابستان، تطابق قابل‌قبولی با مشاهدات دارد (ضریب همبستگی 0.80، p<0.005) در زمستان، هر دو منبع وجود تنش سرمایی گسترده را تأیید کردند؛ بر اساس مشاهدات، 79٪ و طبق ERA5-Land حدود 95٪ مساحت کشور در معرض سرمای خفیف تا متوسط قرار داشت. در منطقه سرد و خشک، مشاهدات کاهش روزهای «خیلی سرد» از حدود 100 به کمتر از 10 روز و افزایش روزهای «بدون تنش» از 50 به بیش از 150 روز را ثبت کردند، درحالی‌که ERA5-Land فراوانی روزهای «خیلی سرد» را تقریباً ثابت و در محدوده 80 تا 100 روز گزارش نمود. در تابستان، مشاهدات بیش از 62٪ و ERA5-Land حدود 43٪ مساحت کشور را با گرمایش خفیف تا متوسط گزارش کردند. در منطقه گرم و مرطوب، بر اساس مشاهدات، تعداد روزهای «خیلی گرم» از کمتر از 50 روز در سال 2000 به بیش از 350 روز افزایش یافت، اما  ERA5-Land این تغییر را کمتر (حدود 150 روز) بازتاب داد. این یافته‌ها بیانگر توان نسبی ERA5-Land در شناسایی الگوهای کلی تنش حرارتی است، هرچند در ثبت تغییرات شدید اقلیمی محلی، دقت آن کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative Analysis of the Spatio-Temporal Distribution of Thermal Stress Derived from ERA5-Land Reanalysis and Observational Data in Iran

نویسندگان [English]

  • Faezeh Noori 1
  • Amir-Hussain Meshkatee 1
  • Abbas Ranjbar Saadat Abadi 2
  • Mojtaba Ezam 3
1 Department of Earth Sciences, SR.C., Tehran, Iran
2 Department of Meteorological Hazards Forecasting, Atmospheric Science and Meteorological Research Center, Tehran, Iran
3 Department of Marine Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

ABSTRACT
This study assesses the performance of ERA5-Land reanalysis data in identifying thermal stress conditions by comparison with synoptic station observations across Iran during the period 1991 to 2020. Daily temperature, humidity, and wind speed data from both datasets were employed to calculate the Effective Temperature and Baker thermal indices. Spatial and temporal variations were examined on a seasonal basis, with further comparisons conducted for cold-dry and warm-humid climatic zones. ERA5-Land showed strong agreement with observational data in reproducing the spatiotemporal distribution of thermal indices, particularly during spring and summer, with a correlation coefficient of 0.80 (p < 0.005). During winter, both datasets indicated extensive cold stress conditions; observational data showed that 79 percent of the country experienced mild to moderate cold stress, compared with approximately 95 percent in the ERA5-Land dataset. Within the cold-dry climatic zone, the number of observed very cold days declined from approximately 100 to fewer than 10, while days classified as no thermal stress increased from about 50 to more than 150. In contrast, ERA5-Land exhibited relatively stable values, indicating approximately 80 to 100 very cold days throughout the study period. During summer, observational data indicated that more than 62 percent of Iran experienced mild to moderate heat stress, whereas ERA5-Land estimated this proportion at approximately 43 percent. In the warm-humid climatic zone, the number of observed very hot days increased from fewer than 50 in 2000 to more than 350, while ERA5-Land captured only about 150 such days. Overall, ERA5-Land effectively captures broad-scale thermal stress patterns but tends to underestimate extreme local climatic variations.
Extended Abstract
Introduction
Understanding thermal conditions is essential for promoting human health, productivity, and overall well-being, as well as for informing urban and environmental planning. These conditions, shaped by temperature, humidity, wind, and solar radiation, can produce both beneficial effects, such as facilitating economic and social activities, and adverse outcomes, including heat- and cold-related illnesses and mortality. To evaluate thermal comfort and thermal stress, numerous bioclimatic indices have been developed. Their accuracy, however, depends strongly on the quality and spatial resolution of the input data.
In recent years, reanalysis datasets such as ERA5-Land have been widely used in climate research because of their extensive spatial and temporal coverage. These datasets, generated through the integration of numerical modeling and meteorological observations, provide a consistent representation of atmospheric conditions. Nevertheless, their reliability at local scales and across diverse climatic zones requires careful validation. By contrast, observational data from synoptic stations, despite limitations such as incomplete spatial coverage and occasional missing values, generally provide more accurate measurements at the local scale. They therefore serve as an essential benchmark for evaluating the performance of reanalysis datasets.
Previous studies conducted in Iran have largely relied on observational data, demonstrating the strong influence of thermal stress on energy demand, building design, and human thermal comfort. These findings also indicate a significant increase in heat stress during recent decades, particularly in lowland regions. Nevertheless, no comprehensive study has directly compared thermal indices derived from reanalysis data with those calculated from synoptic station observations across Iran.
The present study addresses this gap by evaluating the performance of ERA5-Land data in calculating thermal indices and comparing the results with observational records across Iran’s diverse climatic conditions. This comparison is particularly relevant for applications in public health, energy management, and environmental planning.
 
Methodology
Two datasets were employed: ERA5-Land reanalysis data and synoptic meteorological observations from the Iran Meteorological Organization (IRIMO) covering the period 1991 to 2020. ERA5-Land, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF), provides hourly data at a spatial resolution of 0.1 degrees. The observational dataset consisted of monthly mean air temperature, wind speed, and relative humidity records obtained from 130 synoptic stations with complete data coverage. Two thermal comfort indices, Net Effective Temperature (NET) and the Baker Index (CPI), were selected because both can be computed using variables available in reanalysis datasets. These indices were calculated on an hourly basis for both datasets using the Python programming language. ERA5-Land values were extracted from grid points nearest to the synoptic station coordinates and for specific observation times (00, 03, 06, 09, 12, 15, 18, and 21 UTC). Seasonal maps of the thermal indices were generated using Inverse Distance Weighting (IDW) interpolation in order to illustrate their spatial patterns. In addition, mean values of the indices were compared across two representative climatic regions, namely a cold-arid zone in northwestern Iran and a hot-humid zone along the southern coastal areas. The reliability of ERA5-Land was further evaluated by calculating correlation coefficients, coefficients of determination (R²), and corresponding statistical significance levels (p-values).
 
Results and Discussion
Both the observational dataset and the ERA5-Land reanalysis exhibited consistent spatial and seasonal patterns; however, ERA5-Land generally produced slightly cooler thermal values. During winter, most regions of Iran were affected by cold stress conditions, while near-comfort conditions were largely confined to the southern coastal areas. In summer, widespread heat stress was observed across central, southern, and eastern regions of the country. ERA5-Land demonstrated better performance during the warmer seasons, particularly spring and summer, showing stronger correlations with station-based observations, whereas its accuracy declined during autumn and, most notably, winter.
Spatial analyses indicated that ERA5-Land tends to underestimate topographic influences in mountainous areas, frequently reporting temperatures lower than those observed at synoptic stations. Climatic comparisons revealed that observational data more effectively captured warming trends, particularly the increase in extremely hot days in the hot-humid southern regions after 2000. By contrast, ERA5-Land substantially underestimated this increasing trend.
Statistical evaluations confirmed these findings; correlation coefficients were highest in spring and summer (r approximately 0.8), while weaker relationships were observed during autumn and winter (r approximately 0.5 to 0.7). Overall, ERA5-Land provides a reliable source for assessing thermal comfort during warmer periods; however, it requires calibration and integration with station observations for colder seasons and regions characterized by complex topography.
 
Conclusion
This study demonstrates that ERA5-Land data can reliably reproduce large-scale patterns of thermal comfort across Iran during the period 1990 to 2020, with the strongest agreement observed in spring and summer. However, ERA5-Land tends to overestimate cold stress during winter and to underestimate heat stress during summer. These discrepancies were most pronounced in mountainous areas and in the hot-humid southern coastal region. Long-term analyses further revealed that observational data more accurately capture local warming signals, such as the marked increase in extremely hot days after 2013, trends that were not adequately reflected in the ERA5-Land dataset.
In summary, ERA5-Land represents a valuable resource for identifying general patterns of thermal comfort and large-scale climatic conditions; however, it has limitations in representing localized variations and long-term warming trends. Integrating reanalysis datasets with ground-based observational data is therefore crucial for applications related to urban planning, energy management, and climate change adaptation.
 
Funding
No funding was received for this study.
 
Authors’ Contribution
All authors contributed equally to the conceptualization and writing of this article. All authors approved the final manuscript and agreed on all aspects of the work.
 
Conflict of Interest
The authors declare no conflict of interest.
 
Acknowledgments
The authors gratefully acknowledge the scientific advisors who contributed to this study.

کلیدواژه‌ها [English]

  • Thermal Comfort
  • Effective Temperature Index
  • Baker Index
  1. انتظاری، علیرضا؛ احمدی، حمزه؛ کرمی، مختار و احمدی، طالب. (۱۳۹۶). تحلیلی بر شرایط زیست‌اقلیمی و درجه روزهای نیاز گرمایشی و سرمایشی شهر اسلام‌آباد غرب. جغرافیا و برنامه‌ریزی، 21(59)، 1-21.
  2. قانقرمه، عبدالعظیم؛ روشن، غلامرضا و شاهکویی؛ اسماعیل. (۱۳۹۷). بازنگری در تعیین دمای پایه آسایش حرارتی مناطق اقلیمی متفاوت ایران به‌منظور محاسبه شاخص درجه - روز موردنیاز سرمایشی و گرمایش. اطلاعات جغرافیایی (سپهر)، 7(105)،  127-143.
  3. کدخدا، الهام؛ امیدوار، کمال؛ زرین، آذر و مزیدی، احمد. (۱۴۰۲). تحلیل فصلی تنش گرمایی و روند آن در ایران با استفاده از داده‌های ERA5. فصلنامه فیزیک زمین و فضا، ۴۹(3)، ۶۸۵–۶۹۸.https://doi.org/10.22059/jesphys.2023.350315.1007466
  4. لکزاشکور، قاسم و پناهی، فهمیه. (۱۳۹۴). ارزیابی شاخص زیست‌اقلیمی بیکر (CPI): مطالعه موردی استان هرمزگان. دومین کنفرانس بین‌المللی پژوهش در مهندسی، علوم و تکنولوژی، ایران.
  5. موسوی، سید سعید؛ رضایی، پرویز و رمضانی، بهمن. (۱۴۰۳). تحلیل و ارزیابی آسایش حرارتی در فضاهای باز شهر رشت. جغرافیا و مطالعات محیطی، 13(49)، 12-1.
  6. میر، فاطمه؛ خسروی، محمود و شجاع، فائزه. (1404). ارزیابی شاخص‌های بهینه آسایش اقلیمی و آینده نگری تنش های گرمایی در شهر زاهدان؛ (راهبردی جهت سازگاری با تغییر اقلیم). نشریه جغرافیا و آمایش شهری منطقه ای، 54 (15)، 1-32. https://doi.org/10.22111/gaij.2025.50467.3247
  7. De Freitas, C. R., & Grigorieva, E. A. (2015). A comprehensive catalogue and classification of human thermal climate indices. International Journal of Biometeorology, 59(1), 109–120. https://doi.org/10.1007/s00484-014-0819-3
  8. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
  9. Entazari, A., Ahmadi, H., Karami, M., & Ahmadi, T. (2017). An analysis of bioclimatic conditions and heating and cooling degree-days in Eslamabad-e Gharb City. Geography and Planning, 21(59), 1–21. [in persian].
  10. Farajzadeh, H., Saligheh, M., Alijani, B., & Matzarakis, A. (2015). Comparison of selected thermal indices in the northwest of Iran. Natural Environment Change, 1(1), 1–20.
  11. Gao, X.-J., Wu, J., Shi, Y., Han, Z.-Y., Zhang, D.-F., Tong, Y., & Wu, J. (2018). Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations. Atmospheric and Oceanic Science Letters, 11(4), 291–299. https://doi.org/10.1080/16742834.2018.1471578
  12. Ghanbari Gorme, A., Roshan, G., & Shahkooie, E. (2018). A revision of determining the base temperature of thermal comfort in different climatic regions of Iran for calculating the degree-day index required for cooling and heating. Geographical Information (Sepehr), 27(105), 127–143. https://doi.org/10.22131/sepehr.2018.31481[In Persian]. 
  13. Havenith, G., Fiala, D., & Richards, M. (2012). The UTCI-clothing model. International Journal of Biometeorology, 56(3), 461–470. https://doi.org/10.1007/s00484-011-0451-4
  14. Hentschel, G. A. (1987). A human biometeorology classification of climate for large and local scales. In Proceedings of WMO/HMO/UNEP Symposium on Climate and Human Health (WCPA No. 1). World Meteorological Organization.
  15. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  16. Houghten, F. C., & Yaglou, C. P. (1923). Determining lines of equal comfort. Transactions of the American Society of Heating and Ventilating Engineers, 29, 165–176.
  17. Juzbasic, A., Ahn, J., Cha, D., Chang, E., & Min, S. (2022). Changes in heat stress considering temperature, humidity, and wind over East Asia under RCP8.5 and SSP5-8.5 scenarios. International Journal of Climatology, 42(12), 7636–7659. https://doi.org/10.1002/joc.7636
  18. Khadkhoda, E., Omidvar, K., Zarrin, A., & Mazidi, A. (2023). Seasonal analysis of heat stress and its trend in Iran using ERA5 data. Journal of Earth and Space Physics, 49(3), 685–698. https://doi.org/10.22059/jesphys.2023.350315.1007466[In Persian].
  19. Khan, N., Pour, S. H., Shahid, S., Ismail, T., Ahmed, K., Chung, E.-S., Nawaz, N., & Wang, X. (2022). Characteristics of human thermal stress in South Asia during 1981–2019. Environmental Research Letters, 17(10), Article 104017. https://doi.org/10.1088/1748-9326/ac8fa6
  20. Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., & Hyatt, O. (2016). Heat, human performance, and occupational health: A key issue for the assessment of global climate change impacts. Annual Review of Public Health, 37, 97–112. https://doi.org/10.1146/annurev-publhealth-032315-021740
  21. Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
  22. Landsberg, H. E. (1972). The assessment of human bioclimate: A limited review of physical parameters (Technical Note No. 123, WMO-No. 331). World Meteorological Organization. https://library.wmo.int/index.php?id=6303&lvl=notice_display
  23. Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–234. https://doi.org/10.1175/BAMS-86-2-225
  24. Lekzashkour, G., & Panahi, F. (2015). Evaluation of Baker’s Climate Index (CPI): A case study of Hormozgan Province [Conference session]. The 2nd International Conference on Research in Engineering, Science, and Technology, Iran. [In Persian].
  25. Li, P. W., & Chan, S. T. (2000). Application of a weather stress index for alerting the public to stressful weather in Hong Kong. Meteorological Applications, 7(4), 369–375. https://doi.org/10.1017/S1350482700001602
  26. Lin, T.-P., Tsai, K.-T., Hwang, R.-L., & Matzarakis, A. (2012). Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 107(2), 137–146. https://doi.org/10.1016/j.landurbplan.2012.05.011
  27. Luo, M., & Lau, N.-C. (2021). Increasing human‐perceived heat stress risks exacerbated by urbanization in China: A comparative study based on multiple metrics. Earth's Future, 9(7), Article e2020EF001848. https://doi.org/10.1029/2020EF001848
  28. Mir, F., Khosravi, M., & Shoja, F. (2025). Evaluation of optimal climatic comfort indices and forecasting of heat stress in Zahedan City: A strategy for adaptation to climate change. Journal of Regional Urban Geography and Spatial Planning, 15(54), 1–32. https://doi.org/10.22111/gaij.2025.50467.3247[In Persian]
  29. Mohammadi, B., Gholizadeh, M. H., & Alijani, B. (2018). Spatial distribution of thermal stresses in Iran based on PET and UTCI indices. Applied Ecology and Environmental Research, 16(5), 5423–5445. https://doi.org/10.15666/aeer/1605_54235445
  30. Mohan, M., Gupta, A., & Bhati, S. (2014). A modified approach to analyze thermal comfort classification. Atmospheric and Climate Sciences, 4(1), 7–19. https://doi.org/10.4236/acs.2014.41002
  31. Mousavi, S. S., Rezaei, P., & Ramazani, B. (2024). Analysis and evaluation of thermal comfort in the open spaces of Rasht City. Geography and Environmental Studies, 13(49), 1-12. [In Persian]
  32. Polydoros, A., & Cartalis, C. (2014). Assessing thermal risk in urban areas – An application for the urban agglomeration of Athens. Advances in Building Energy Research, 8(1), 74–83. https://doi.org/10.1080/17512549.2014.890536
  33. Raymond, C., Matthews, T., & Horton, R. M. (2020). The emergence of heat and humidity too severe for human tolerance. Science Advances, 6(19), Article eaaw1838. https://doi.org/10.1126/sciadv.aaw1838
  34. Rong, Y. L., Zhang, X., & He, Q. (2017). Study and analysis of meteorological effect on Shanghai Sheshan National Tourist Resorts in Shanghai. Journal of Geoscience and Environment Protection, 5(3), 11–22. https://doi.org/10.4236/gep.2017.53002
  35. Sailor, D. J., Georgescu, M., Milne, J. M., & Hart, M. A. (2015). Development of a national anthropogenic heating database with an extrapolation for international cities. Atmospheric Environment, 118, 7–18. https://doi.org/10.1016/j.atmosenv.2015.07.016
  36. Schwingshackl, C., Sillmann, J., Russo, S., & Vogel, M. M. (2021). Heat stress indicators in CMIP6: Estimating future trends and exceedances of impact‐relevant thresholds. Earth’s Future, 9(3), Article e2020EF001885. https://doi.org/10.1029/2020EF001885
  37. Siple, P. A., & Passel, C. F. (1945). Measurements of dry atmospheric cooling in sub-freezing temperatures. Proceedings of the American Philosophical Society, 89(1), 177–199.
  38. Yan, Y., Xu, Y., & Yue, S. (2021). A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Scientific Data, 8, Article 229. https://doi.org/10.1038/s41597-021-01010-w
  39. Zhou, Y., Wang, J., & Wang, Y. (2019). Estimation of travel climate comfort degree in the cross-border region between China and Russia based on GIS. Journal of Resources and Ecology, 10(6), 657–666. https://doi.org/10.5814/j.issn.1674-764x.2019.06.006