بابایی فینی، ا.؛ صفرراد، ط. و کریمی م. (1395). تحلیل و شناسایی الگوهای همدیدی طوفانهای گردوغبار غرب ایران، جغرافیاومخاطراتمحیطی، 17: 105-120.
باعقیده، م. و احمدی ح. (1393). تحلیل مخاطرة گردوغبار و روند تغییرات آن در غرب و جنوب غرب ایران، فصلنامة امدادونجات، 22: 43-60.
خسروی، م. (1389). بررسی توزیع عمودی گردوغبار ناشی از طوفان در خاورمیانه با استفاده از مدل NAAPS، مورد سیستان ایران، مجموعهمقالاتچهارمینکنگرةبینالمللیجغرافیدانانجهاناسلام.
خوشاخلاق، ف.؛ نجفی، م.س. و صمدی، م. (1391). واکاوی همدید رخداد گردوغبار بهاره در غرب ایران، پژوهشهایجغرافیایطبیعی، 80: 99-124.
رنجبر سعادتآبادی، ع. و عزیزی، ق. (1391). مطالعۀ الگوهای هواشناسی، شناسایی چشمههای تولید گردوغبار و مسیر حرکت ذرات معلق برای توفان جولای 2009، پژوهشهای جغرافیای طبیعی، 44 (3): 73-92.
عزیزی، ق.؛ شمسیپور، ع.ا.؛ میری، م. و صفرراد، ط. (1391). تحلیل آماری- همدیدی پدیدة گردوغبار در نیمة غربی ایران، محیطشناسی، 63: 73-84.
عساکره، ح.؛ مسعودیان، س. ا. و شادمان، ح. (1392). تحلیل همدید پویشی فراگیرترین روز گرم ایران طی سال ۱۳۴۰ تا سال ۱۳۸۶، جغرافیاومخاطراتمحیطی، 7: 35-52.
کریمی احمدآباد، م. و شکوهی رازی، ک. (1391). اندرکنش گردش جوّ و پوشش سطح زمین در سازوکار تشکیل و گسترش طوفانهای گردوغبار تابستانة خاورمیانه، پژوهشهایجغرافیایطبیعی، 78: 113-130.
کریمی، م. (1386). تحلیل منابع رطوبت بارشهای ایران، رسالة دورة دکتری، به راهنمایی دکتر منوچهر فرجزاده، دانشگاه تربیت مدرس.
مفیدی، ع. و جعفری، س. (1391). بررسی نقش گردش منطقهای جوّ بر روی خاورمیانه در وقوع طوفانهای گردوغباری تابستانه در جنوب غرب ایران، مطالعاتجغرافیاییمناطقخشک، 5: 17-45.
Abdi Vishkaee, F.; Flamant, J.; Cuesta, F.C.; lamant, P. and Khalesifard, H.R. (2011). Multiplatform observations of dust vertical distribution during transport over northwest Iran in the summertime, J. Geophys. Res., 116, D05206, doi:10.1029/2010JD014573.
Alizadeh Choobari, O.; Zawar-Reza, P. and Sturman, A. (2014a). The global distribution of mineral dust and its impacts on the climate system: A review, Atmospheric Research, 138: 152-165.
Alizadeh Choobari, O.; Zawar-Reza, P. and Sturman, A. (2014b). The “wind of 120 days” and dust storm activity over the Sistan Basin, Atmospheric Research, 143: 328-341.
Alizadeh-Choobari, O.; Ghafarian. P. and Owlad, E. (2016). Temporal variations in the frequency and concentration of dust events over Iran based on surface observations, Int J Climatol, 36(4):2050-2062.
Asakereh, H.; Masoodian, S.A. and Shadman, A. (2013). Synoptic and dynamic analysis of most pervasive hot day in Iran during 1964-2009, Geog. and Environ. Haz., 7: 35-52.
Azizi, G.; Shamsipour, A.A.; Miri, M. and Safarrad, T. (2012a). Statistic and Synoptic Analysis of Dust Phenomena in West of Iran, Journal of environmental studies, 38(3):123-134.
Azizi, G.; Shamsipour, A.A.; Miri, M. and Safarrad, T. (2012b). Synoptic and remote sensing analysis of dust events in southwestern Iran, Natural Hazards, 64(2): 1625-1638.
Baaghideh, M. and Ahmadi, H. (2014). The analysis of dust storm hazard occurrence and its variations trend in west & southwest of Iran, Scientific Journal of Rescue & Relief, 6(22): 43-60.
Babaee Fini, O.; Safarrad, T. and Karimi, M. (2016). Analysis and Identification of Synoptic Patterns of Dust Storms in the West of Iran, Geography and Environmental Hazards, 17: 105-120.
Cavalieri, O.; Cairo, F.; Fierli, F.; Di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B. Formenti, P.; Marticorena, B. and Rajot, J.L. (2010). Variability of aerosol vertical distribution in the Sahel, Atmos. Chem. Phys., 10: 12005-12023.
Chen, F. and Dudhia, J. (2001). Coupling an advanced land surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Weather Rev., 129: 569-585.
Engelstaedter, S.; Tegen, I.; and Washington, R. (2006). North African dust emissions and transport, Earth-Sci. Rev., 79: 73-100.
Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.; Holben, B.; Dubovik, O. and Lin, S.J. (2001). Sources and distributions of dust aerosols simulated with the GOCART model: J. Geophys. Res., 106: 20255-20273.
Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C. and Eder, B. (2005). Fully coupled online chemistry within the WRF model, Atmos. Environ., 39: 6957-6975.
Grell, G. A. and Devenyi, D. (2002), A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29 (14): 381-384.
Hamidi, M.; Kavianpour, M.R. and Shao, Y. (2013). Synoptic Analysis of Dust Storms in the Middle East, Asia-Pacific J Atmos Sci, 49(3): 279-286.
Hojati, S.; Khademi, H.; Faz Cano, A. and Landi, A. (2011). Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains, Catena J., 88:27-36.
Hong, S.Y. (2010). A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, Q. J. R. Meteorol. Soc., 136(651): 1481-1496.
Huang, J.P.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y. and Zhao, Q. (2009). Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys., 9: 4011-4021.
Huang, X.; Wang, T.; Jiang, F.; Liao, J.; Cai1, Y.; Yin, Ch.; Zhu, J. and Han, Y. (2013). Studies on a Severe Dust Storm in East Asia and Its Impact on the Air Quality of Nanjing, China, Aerosol and Air Quality Research, 13: 179-193.
Janjic, Z.I. (2001). Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model,
NCEP Office Note, 437, available at:
http://www.emc.ncep.noaa.gov.
Karimi AhmadAbad, M. (2008). Analysis of the moisture supply sources for Iran’s precipitation. PhD, Thesis. Tarbiat Modarres University, School of Humanities.
Karimi AhmadAbad, M. and Shakouhi Razi, K. (2012). Interaction between Atmospheric Circulation and Land Cover in the Mechanism of Creation of Summertime Dust Storms in Middle East (Case Study, July 2009), Physical Geography Research Quarterly, 78: 113-130.
Khoshakhllagh, F.; Najafi, M.S. and Samadi, M. (2012). An Analysis on Synoptic Patterns of Springtime Dust Occurrence in West of Iran, Physical Geography, 2(80): 99-124.
Khosravi, M. (2010). A Survey on the Vertical Distribution of Dust and Particle to Arise fromStorms in Middle East Case study: Sistan, Iran, The Forth International congress of the Islamic world Geographers, Zahedan, Iran.
Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Rosenfeld, D. and Ding, Y. (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation, Nat. Geosci., 4: 888-894.
Lin, Y.L.; Farley, R.D. and Orville, H.D. (1983). Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22: 1065-1092.
Martin E. J., (2006). Mid-Latitude Atmospheric Dynamics: A First Course. Wiley. PP. 336.
Miri, A.; Ahmdi, H.; Ekhtesasi, M.; Panjehkeh, N. and Ghanbarie, A. (2010). Environmental and socio-economic impacts of dust storms in Sistan Region, J. of Environ. Studies, 66(3): 343-355.
Mofidi, A. and Jafari, S. (2011). The Role of Regional Atmospheric Circulation over the Middle East on the Occurrence of Summer Dust-storms in Southwest Iran, Arid regions Geographic Studies, 2(5):17-45.
Najafi, M.S.; Khoshakhlagh, F.; Zamanzadeh, S.M.; Shirazi, M.H.; Samadi, M. and Hajikhani, S. (2014). Characteristics of TSP loads during the Middle East Springtime Dust Storm (MESDS) in Western Iran, Arab J Geosci., 7(12): 5367-5381.
Prakash Jish, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S. and Bangalath, H. (2015). The impact of dust storms on the Arabian Peninsula and the Red Sea, Atmos. Chem. Phys., 15: 199-222.
Samadi, M.; Darvishi, A.; Mohammadi, H.; Alavi Panah, S.K. and Najafi, M.S. (2014). Global dust Detection Index (GDDI); a new remotely sensed methodology for dust storms detection, Journal of Environmental Health Science and Engineering, 12: 20.
Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; Mctainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X. and Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science, Aeolian Res., 2: 181-204.
Soares, W.R. and Marengo, J.A. (2008). Assessments of moisture fluxes east of the Andes in South America in a global warming scenario, Int. J. Climatol, DOI: 10.1002/joc.1800.
Teixeira, J.C.; Carvalho, A.C.; Tuccella, P.; Curci, G. and Rocha, A. (2016). WRF-chem sensitivity to vertical resolution during a saharan dust event, Physics and Chem. of the Earth, 94: 188-195.
Wild, O.; Zhu, X. and Prather, M.J. (2000). Fast-J: accurate simulation of in- and below cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37: 245-282.
Zarasvandi, A.; Carranza, E.J.M.; Moore, F. and Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran), Journal of Geochemical Exploration, 111: 138-151.
Zhang, J. and Li, X.M. (2012). Vertical distribution of sand-dust aerosols and the relationships with atmospheric environment, Journal of Arid Land, 4(4): 357-368.